欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 837-844.doi: 10.3724/SP.J.1006.2013.00837

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米纹枯病胁迫相关miRNA功能研究

罗茂1,**,彭华2,**,宋锐2,高健2,潘光堂2,*,张志明2,*   

  1. 1 泸州医学院药物与功能性食品研究中心, 四川泸州 646000; 2 四川农业大学玉米研究所, 四川温江611130
  • 收稿日期:2012-09-03 修回日期:2012-12-11 出版日期:2013-05-12 网络出版日期:2013-02-19
  • 通讯作者: 潘光堂, 张志明, E-mail: panlab605@gmail.com, Tel: 028-86290917
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(SS2012AA100107, 2012AA10A300),国家自然科学基金项目(30900901和31271740/c130403),高产转基因玉米新品种培育项目(2011ZX08003-003)和四川省教育厅面上基金(11ZB123)资助。

Functional Analysis of miRNA Resistant to Banded Leaf-Sheath Blight in Maize

LUO Mao1,**,PENG Hua2,**,SONG Rui2,GAO Jian2,PAN Guang-Tang2,*,ZHANG Zhi-Ming2,*   

  1. 1 Research Center for Drug Discovery of Luzhou Medical College, Luzhou 646000, China; 2 Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang 611130, China
  • Received:2012-09-03 Revised:2012-12-11 Published:2013-05-12 Published online:2013-02-19
  • Contact: 潘光堂, 张志明, E-mail: panlab605@gmail.com, Tel: 028-86290917

摘要:

microRNA (miRNA)是一类内源性的、19~24个碱基长度的小分子非编码RNA, 通过碱基互补调控靶基因的表达, 参与调控植物生长发育, 并在多种非生物与生物胁迫响应中发挥重要作用。但目前关于玉米纹枯病胁迫相关miRNA表达调节与功能尚不完全清楚。利用生物信息学挖掘玉米中的microRNA及其靶基因, 筛选到23条新的玉米miRNA, 预测到89个靶基因。本文在前期研究基础上, 以对纹枯病抗性不同的自交系R15478作为对象, 采用半定量方法对预测获得部分miRNA前体初步鉴定, 采用实时荧光定量PCR手段对R15478中表达存在差异的成熟miRNA进行抗纹枯病组织特异性表达验证。结果提示, 部分miRNA在玉米抗纹枯病胁迫过程中可能起着重要的调控作用。

关键词: miRNA, 半定量, 实时荧光定量PCR, 玉米

Abstract:

microRNAs (miRNAs) are an extensive class of endogenous, non-coding, short (19–24 nt) RNA molecules, which directly involve in regulating gene expression at the post-transcriptional level and play important roles in the regulation of plant growth and development, and in response to various abiotic and biotic stress. However, the miRNAs-regulated networks and function in response to BLSB are not very clear in Zea mays. In our previous studies, miRNAs and their target genes in maize were excavated by bioinformatic prediction, and a total of 23 conserved miRNAs and 89 miRNA targets were predicted and identified by a web-based integrated computing system and WMD 3. In this paper, based on previous studies, we profiled the responsive functions of miRNAs under BLSB stress, preliminarily identified the precursor of miRNAs in BLSB-stressed Zea mays (R15 and Ye478) by using semi-quantitative RT-PCR and detected the level of mature miRNAs under BLSB stress, showing that some miRNAs play very important roles in response to BLSB in Zea mays.

Key words: miRNA, Semi-quantitative RT-PCR, QPCR, Zea mays

[1]Chung W, Huang J, Huang H. Formulation of a soil biofungicide for control of damping-off of Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani. Biol Control, 2005, 32: 287–294



[2]Moussa T A A. Studies on biological control of sugarbeet pathogen Rhizoctonia solani Kuhn. J Biol Sci, 2002, 2: 800–804



[3]Zhang Z M, Liu L, Lin H J, Yuan G S, Zeng X, Shen Y O, Zhao M J, Zhao Q, Pan G T. Identification of genes differentially expressed in maize (Zea mays L.) during Rhizoctonia Solani Kühn infection by suppression subtractive hybridization. Afr J Biotechnol, 2012, 11: 2827–2838



[4]Zhao M-J(赵茂俊), Zhang Z-M(张志明), Gao S-B(高世斌), Li W-C(李晚忱), Rong T-Z(荣廷昭), Pan G-T(潘光堂). Identification of quantitative trait loci controlling resistance to banded leaf-sheath blight in maize. Acta Agron Sin (作物学报), 2006, 32(5): 698–702 (in Chinese with English abstract)



[5]Liu L(刘丽), Ma Y-Y(马永毅), Zhang Z-M(张志明), Leng P-F(冷鹏飞), Pan G-T(潘光堂), Zhao M-J(赵茂俊). Functional effects of different defense enzymes on banded leaf and sheath blight of maize. J Maize Sci (玉米科学), 2009, 17(3): 99–102 (in Chinese with English abstract)



[6]Zeng X(曾兴), Li Y(李芸), Lin H-J(林海建), Zhang Z-M(张志明), Zhao M-J(赵茂俊), Pan G-T(潘光堂). Analysis of differential protein induced by Rhizoctonia solani Kühn in different resistant maize inbred lines. J Agric Biotechnol (农业生物技术学报), 2011, 19(2): 250–257 (in Chinese with English abstract)



[7]Lin H J, Tan D F, Zhang A M, Lan H, Gao S B, Rong T Z, Pan G T. Analysis of digenic epistatic and QTL × environment interactions for resistance to Banded Leaf and Sheath Blight in Maize (Zea mays). Int J Agric Biol, 2008, 10: 605–611



[8]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity tolin-14. Cell, 1993, 75: 843–854



[9]Garcia D. A miRacle in plant development: Role of microRNAs in cell differentiation and patterning. Semin Cell Dev Biol, 2008, 19: 586–595



[10]Shukla L I, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta, 2008, 1779: 743–748



[11]Luo M(罗茂), Zhang Z-M(张志明), Gao J(高健), Zeng X(曾兴), Pan G-T(潘光堂). The role of miR319 in plant development regulation. Hereditas (Beijing)(遗传), 2011, 33(11): 1203–1211 (in Chinese with English abstract)



[12]Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004, 14: 787–799



[13]Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16: 2001–2019



[14]Gao P, Bai X, Yang L, Lü D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y. osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep, 2011, 38: 237–242



[15]Zhang Z-M(张志明), Song R(宋锐), Peng H(彭华), Luo M(罗茂), Shen Y-O(沈亚欧), Liu L(刘丽), Zhao M-J(赵茂俊), Pan G-T(潘光堂). Bioinformatic prediction of microRNAs and their target genes in maize. Acta Agron Sin (作物学报), 2010, 36(8): 1324–1335 (in Chinese with English abstract)



[16]Zhang J Y, Xu Y Y, Huan Q, Chong K. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics, 2009, 10: 449



[17]Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell, 2003, 4: 205–217



[18]Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16: 2001–2019



[19]Liu Q, Zhang Y C, Wang C Y, Luo Y C, Huang Q J, Chen S Y, Zhou H, Qu L H, Chen Y Q. Expression analysis of phyto-hormone regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett, 2009, 583: 723–728



[20]Zhou Z S, Huang S Q, Yang Z M. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun, 2008, 374: 538–542



[21]Vaucheret H, Vazquez F, Crété P, Bartel D P. The action of ARGONAUTE 1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 2004, 18: 1187–1197



[22]Fode B, Siemsen T, Thurow C, Weigel R, Gatz C. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stressinducible promoters. Plant Cell, 2008, 20: 3122–3135



[23]Xiong G-S(熊国胜), Li J-Y(李家洋), Wang Y-H(王永红). Advances in the regulation and crosstalks of phytohomones. Chin Sci Bull (科学通报), 2009, 54(18): 2718–2733 (in Chinese)



[24]Tao J-F(陶家风), Tan F-H(谭方河). Studies on the infection by Rhizoctonia solani on maize. Acta Phytopathol Sin (植物病理学报), 1995, 25(3): 253–257 (in Chinese with English abstract)



[25]Tang Z-R(唐朝荣), Chen J(陈捷), Ji M-S(纪明山), Zou Q-D(邹庆道), Song G(宋刚). The etiology of corn sheath blight in Liaoning province. Acta Phytopathol Sin (植物病理学报), 2000, 30(4): 319–326 (in Chinese with English abstract)



[26]Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425: 257–263



[27]Schommer C, Palatnik J F, Aggarwal P, Chételat A, Cubas P, Farmer E E, Nath U, Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol, 2008, 6: e230



[28]Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106: 22534–22539



[29]Agarwal S, Agarwal S, Jin H, Pancholi P, Pancholi V. Serine/threonine phosphatase (SP-STP), secreted from Streptococcus pyogenes, is a pro-apoptotic protein. J Biol Chem, 2012, 287: 9147–9167



[30]Zhu H, Hu F, Wang R, Zhou X, Sze S H, Liou L W, Barefoot A, Dickman M, Zhang X. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell, 2011, 145: 242–256
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!