欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1214-1222.doi: 10.3724/SP.J.1006.2013.01214

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜籽粒含油量、蛋白质、纤维素及半纤维素含量QTL分析

马珍珍1,2,李加纳1,2,Bennjiamin WITTKOP3,Martin FRAUEN4,阎星颖1,2,刘列钊1,2,*,肖阳1,2   

  1. 1 西南大学农学与生物技术学院, 重庆 400716; 2重庆市油菜工程技术研究中心, 重庆 400716; 3Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany, 4Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, 24363 Hohenlieth, Germany
  • 收稿日期:2012-11-16 修回日期:2013-03-11 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 刘列钊, E-mail: liezhao2003@126.com, Tel: 023-68250701
  • 基金资助:

    本研究由国家自然科学基金项目(31171584)和重庆市自然科学基金项目(cstc2011jjA8000g)资助。

Analysis of QTLs for Oil, Protein, Cellulose and Hemicellulose Contents of Seeds in Brassica napus L.

MA Zhen-Zhen1,2,LI Jia-Na1,2,Benjiamin WITTKOP3,Martin FRAUEN4,YAN Xing-Ying1,2,LIU Lie-Zhao1,2,*,XIAO Yang1,2   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; 2 Chongqing Engineering Research Center for Rapeseed, Chongqing 400716, China; 3 Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; 4 Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, 24363 Hohenlieth, Germany
  • Received:2012-11-16 Revised:2013-03-11 Published:2013-07-12 Published online:2013-04-23
  • Contact: 刘列钊, E-mail: liezhao2003@126.com, Tel: 023-68250701

摘要:

以甘蓝型黄籽油菜GH06和甘蓝型黑籽油菜P174为亲本,通过单粒法连续自交8代构建重组自交系群体应用SSR标记绘制31个连锁群(LGs)的遗传连锁图谱,图谱总长1437.1 cM,相邻标记间的平均距离为3.89 cM4个不同环境下RIL8群体中每个株系籽粒含油量、蛋白质、纤维素和半纤维素含量进行了近红外分析,性状相关性表明含油量与其他3个性状均表现负相关,蛋白质含量与纤维素和半纤维素分别表现负相关和正相关。结合构建的遗传图谱采用复合区间作图法分析4个性状QTL,共检测到26QTL,分布在N2N3N8N9N11N13N16N17连锁群上,其中8个含油量QTL可解释表型变异的4.96%~21.83%6个蛋白含量QTL,可解释表型变异的3.12%~14.28%4个纤维素含量QTL,可解释表型变异的4.60%~17.29%8个半纤维素含量QTL可解释表型变异率的6.66%~16.68%。在N8上,发现有含油量QTL与半纤维素含量QTL重叠的区段。在N9上,发现有纤维素含量QTL与半纤维素含量QTL重叠的区段,上述2个区段重叠QTL加性效应方向相反。本研究认为油菜种子含油量、蛋白质、纤维素和半纤维素属于典型的数量性状,受环境影响较大,与这些QTL紧密相关的分子标记可为下一步分子标记辅助育种提供一定技术支撑。

关键词: 甘蓝型油菜, 含油量, 蛋白质, 纤维素, 半纤维素, QTL

Abstract:

In order to study oil, protein, cellulose and hemicellulose contents of rapeseed, recombinant inbred lines (RILs) were developed through successive selfing up to eight generations from the F2 of a cross between yellow seeded female parent GH06 and black seeded male parent P174. The SSR markers were used to construct the linkage map, containing 31 linkage groups with the total map length of 1437.1 cM and an average distance of 3.89 cM. We measured the RIL population seeds quality in four different environments, the result showed that the oil content was negatively correlated with other three traits, and there were a negative correlation between protein content and cellulose content and a positive correlation between protein content and hemicellulose content. Using the method of composite interval mapping (CIM) to analysis oil, protein, cellulose and hemicellulose contents, a total of 26 QTLs for affecting the four traits were detected in linkage groups of N2, N3, N8, N9, N11, N13, N16, and N17. Eight QTLs were detected for oil content and the contribution for phenotypic variation ranged from 4.96% to 21.83%, six QTLs were detected for protein content and the contribution for phenotypic variation ranged from 3.12% to 14.28%, four QTLs were detected for cellulose content and the contribution for the phenotypic variation ranged from 4.60% to 17.29%, eight QTLs were detected for hemicellulose content and the contribution for phenotypic variation ranged from 6.66% to 16.68%. Furthermore, overlapping regions were observed in linkage group N8 between QTLs of oil content and QTLs for hemicellulose content, andin linkage group N9 between QTLs of cellulose content and QTLs for hemicellulose content. These results suggested that oil, protein, cellulose and hemicellulose contents are typical quantitative traits. They are controlled by many minor effect genes and influenced by environment. Molecular markers linked with these QTLs will be useful for facilitating molecular marker-assisted breeding.

Key words: Brassica napus L., Oil content, Protein, Cellulose, Hemicellulose, QTL

[1]Wang H-Z(王汉中). Strategy for rapeseed genetic improvement in China in the coming fifteen years. Chin J Oil Crop Sci (中国油料作物学报), 2004, 26: 98–101 (in Chinese with English abstract)



[2]Ecke W, Uzunova M, Weissleder K. Mapping the genome of rapeseed (Brassica napus L.): II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet, 1995, 91: 972–977



[3]Mahmood T, Rahman M H, Stringam G R, Yeh F, Good A G. Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet, 2006, 113: 1211–1220



[4]Gül M, Becker H C, Ecke W. QTL mapping and analysis of QTL× nitrogen interactions for protein and oil contents in Brassica napus L. 11th Int. Rapeseed Congress, Copenhagen, Denmark. 6–10 July, 2003: 91–93



[5]Yan X Y, Li J N, Fu F Y, Jin M Y, Chen L, Liu L Z. Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica, 2009, 170: 355–364



[6]Mei D-S(梅德圣), Zhang Y(张垚), Li Y-C(李云昌), Hu Q(胡琼), Li Y-D(李英德), Xu Y-S(徐育松). Identification of quantitative trait loci for oil, protein and glucosinolate content in Brassica napus. Chin Bull Bot (植物学报), 2009, 44(5): 536–545 (in Chinese with English abstract)



[7]Jin M-Y(金梦阳), Li J-N(李加纳), Fu F-Y(付福友), Zhang Z-S(张正圣), Zhang X-K(张学昆), Liu L-Z(刘列钊). QTL analysis of oil and hull content in Brassica napus L. Sci Agric Sin (中国农业科学), 2007, 40(4): 677–684 (in Chinese with English abstract)



[8]Zhang S F, Ma C Z, Zhu J C, Wang J P, Wen Y C, Fu T D. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene. Acta Genet Sin, 2006, 33: 171–180



[9]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL× environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 1255–1264



[10]Liu H-B(刘宏波), Liu Z-S(刘忠松). Research on distant hybridization compatibility of rape. Crop Res (作物研究), 2006, (5): 456–458 (in Chinese with English abstract)



[11]Lister C, and Dean C, Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana, Plant J, 1993, 4: 745–750



[12]Wittkop B, Snowdon R J, Friedt W. New NIRS Calibrations for fiber fractions reveal broad genetic variation in Brassica napus Seed Quality. J Agric Food Chem, 2012, 60: 2248–2256



[13]Wang S, Basten C J, Zeng Z B. Windows QTL cartographer. Version 2.5 [computer program] department of statistics, North Carolina State University, Raleigh, N C. 2006. Available from http://statgen.ncsu.edu/qtlcart/WQTLCart.htm



[14]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13



[15]Burr B, Burr F A. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet, 1991, 7: 55–60



[16]Ferreira A, Silva M F, da Silva L C, Cruz C D. Estimating the effects of population size and type on the accuracy of genetic maps. Genet Mol Biol, 2006, 29: 187–192



[17]Xu Y, Zhu L, Xiao J, Huang N, McCouch S R. Chromosomal regions associated with segregation distortion of molecular markers in F2 backcross double haploid and recombinant inbred populations in rice (Oryza sativa L). Mol Gen Genet, 1997, 253: 535–545



[18]He B, Li J Z, Zheng X W, Shen L S, Lu C F, Chen Y, Zhu L H. Comparison of Molecular Linkage Maps and Agronomic Trait Loci between DH and RIL Populations Derived from the Same Rice Cross. Crop Sci, 2001, 41: 1240–1246



[19]Li W M, Tang D Z, WU W R, LU H R, Worland A J. A Molecular map based on an indica/indica recombinant inbred population and its comparison with an existing map derived from indica/japonica cross in rice. Chin J Rice Sci, 2000, 14: 71–78



[20]Al-Turki A I, Dick W A. Myrosinase activity in soil. Soil Sci Soc Am J, 2003, 67: 139-145



[21]Garzon G A. Effect of oil content and pH on the physicochemical of rape oil composites properties. Cereal Chem, 2003, 80: 2–5



[22]Zhang Z-L(张子龙), Wang G-X(王贵学), Tang Z-L(唐章林), Chen L(谌利), Li J-N(李加纳). Optimization of integrated agro-nomic technology for high oil content cultivation of “Yuhuang 1”. J Southwest Agric Univ (Nat Sci) (西南农业大学学报), 2004, 26(4): 401–404 (in Chinese with English abstract)



[23]Wu J(武杰), Li B-Z(李宝珍), Chen L(谌利), Tang Z-L(唐章林), Wang Z-Y(王正银), Li J-N(李加纳). Effects of different fertilizer levels on oil content of yellow-coated rapeseed (Brassica napus L.). Chin J Oil Crop Sci (中国油料作物学报), 2004, 26(4): 59–62 (in Chinese with English abstract)  



[24]Shen J X, Fu T D, Yang G S, Ma C Z, Tu J X. Genetic analysis of rapeseed self-incompatibility lines reveals significant heterosis of different patterns for yield and oil content traits. Plant Breed, 2005, 124, 111–116



[25]Wu J G, Shi C H, Zhang H Z. Partitioning genetic effects due to embryo, cytoplasm and maternal parent for oil content in oilseed rape (Brassica napus L). Genet Mol Biol, 2006, 29: 533–538



[26]Hu Z-L(胡中立), Liu H-L(刘后利). Combining ability analysis for quality characters of Brassica napus and possible approaches of obtaining new germplasms of low glucosinolate content. Acta Agron Sin (作物学报), 1989, 15(3): 221–229 (in Chinese with English abstract)



[27]Zhao J, Becker H C, Zhang D, Zhang Y, Ecke W. Oil content in a European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype environment interactions. Crop Sci, 2005, 45: 51–59



[28]Dai W(戴维), Niu Y-Z(牛应泽), Guo S-X(郭世星), Jiang J(蒋俊). Analysis of heterosis and combining ability in oil content in Brassica napus L. under different environments. Southwest China J Agric Sci (西南农业学报), 2008, 21(3): 581–585 (in Chinese with English abstract)



[29]Si P, Rodney J M, Nick G, David W T. Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Aus J Agric Res, 2003, 54: 397–407



[30]Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114: 67–80



[31]Zhang J-F(张洁夫), Qi C-K(戚存扣), Pu H-M(浦惠明), Chen S(陈松), Chen F(陈锋), Gao J-Q(高建芹), Chen X-J(陈新军), Gu H(顾慧), Fu S-Z(傅寿仲). Inheritance and QTL Identification of oil content in rapeseed (Brassica napus L.). Acta Agron Sin (作物学报), 2007, 33(9): 1495–1501 (in Chinese with English abstract)



[32]Burns M J, Barnes S R, Bowman J G, Clarke M H E, Werner C P, Kearsey M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus: I. Seed oil content and fatty acid composition. Heredity, 2003, 90: 39–48



[33]Cao Z Y, Tian F, Wang N, Jiang C C, Lin B, Xia W, Shi J Q, Long Y, Zhang C Y, Meng J L. Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. J Genet Genom, 2010, 37: 231–240

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[11] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[12] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[13] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[14] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[15] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!