作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1319-1324.doi: 10.3724/SP.J.1006.2013.01319
侯鹏飞1,马俊青2,赵鹏飞1,张欢玲1,赵会杰1,刘华山1,赵一丹1,汪月霞1,*
HOU Peng-Fei1,MA Jun-Qing2,ZHAO Peng-Fei1,ZHANG Huan-Ling1,ZHAO Hui-Jie1,LIU Hua-Shan1,ZHAO Yi-Dan1,WANG Yue-Xia1,*
摘要:
为了探究外源甜菜碱对干旱胁迫下小麦幼苗的生长调节作用,以优质高产、高抗旱的小麦品种矮抗58为材料,四叶期分别用0.1、1.0和10.0 mmol L−1的GB预处理小麦叶片,同时在根部施加30%聚乙二醇(PEG-6000)以模拟干旱环境,研究其对小麦超氧化物歧化酶(SOD),过氧化氢酶(CAT),过氧化物酶(POD),丙二醛(MDA)、超氧阴离子自由基()产生速率、叶绿素含量及相对含水量的影响,并采用Real-time PCR测定叶绿体psbA基因表达水平的变化。结果表明,干旱胁迫明显减少小麦叶片相对含水量和叶绿素含量,降低SOD、CAT及POD活性,提升MDA含量和O2?产生速率,抑制psbA基因表达水平,而外施GB具一定浓度效应,在适当浓度下能明显缓解这些胁迫反应,调控干旱胁迫下小麦叶绿体抗氧化酶活性以清除多余活性氧,减缓相对含水量及叶绿素含量的降低,提升psbA基因的表达水平,从而加快受损D1蛋白的周转并提高小麦的抗干旱胁迫能力。
[1]Pandey D M, Yeo U D. Stress-induced degradation of D1 protein and its photoprotection by DCPIP in isolated thylakoid membranes of barley leaf. Biol Plant, 2008, 52: 291–298 [2]Liu W J, Yuan S, Zhang N H, Lei T, Duan H G, Liang H G, Lin H H. Effect of water stress on photosystem II in two wheat cultivars. Biol Plant, 2006, 50: 597–602 [3]Yuan L(袁琳), Karim Ali(克热木?伊力), Zhang L-Q(张利权). Effects of NaCl stress on active oxygen metabolism and membrane stabiliyty in Pistacia vera seedlings. Acta Phytoecol Sin (植物生态学报), 2005, 29(6): 985–991 (in Chinese with English abstract) [4]Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T. Quality control of photosystem II: impact of light and heat stresses. Photosynth Res, 2008, 98: 589–608[5]Zhao P-F(赵鹏飞), Wang L-H(王林华), Zhao H-J(赵会杰), Liang S-R(梁书荣), Lü S-M(吕淑敏), Qu X-F(曲小菲), Wang Y-X(汪月霞). Regulation of exogenous salicylic acid on expression of chloroplast gene psbA in wheat (Triticum aestivum) leaves under heat and high irradiance stress. Plant Physiol Commun (植物生理学通讯), 2010, 46(6): 537–540 (in Chinese with English abstract) [6]Wang Y-X(汪月霞), Suo B(索标), Zhao P-F(赵鹏飞), Qu X-F(曲小菲), Yuan L-G(袁利刚), Zhao X-J(赵雪娟), Zhao H-J(赵会杰). Effect of abscisic acid treatment on psbA gene expression in two wheat cultivars during grain filling stage under drought stress. Acta Agron Sin (作物学报), 2011, 37(8): 1372–1377 (in Chinese with English abstract) [7]Bourot S, Sire O, Trautwetter A . Glycine betaine assisted protein folding in a lysA mutant of Escherichia coli. J Biol Chem, 2000, 275: 1050–1056[8]Prasad KVSK, Pardha-Saradhi P. Enhance tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into chloroplasts. Plant Sci, 2004, 166: 1197–212[9]Allakhverdiev S I, Los D A, Mohanty P, Nishiyama Y, Murata N. Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta, 2007, 1767: 1363–1371[10]Wang G P, Hui Z, Li F, Zhao M R, Zhang J, Wang W. Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnol Rep, 2010, 4: 213–222[11]Schonfeld M, Johnson R, Carver B, Mornhinweg D. Water relations in winter wheat as drought resistant indicators. Crop Sci, 1988, 28: 526–531 [12]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomemranes. Methods Enzymol, 1987, 148: 350–382[13]Xu P L, Guo Y K, Bai J G, Shang L, Wang X J. Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant, 2008, 132: 467–478[14]Zhang J H, Huang W D, Liu Y P, Pan Q H. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J Int Plant Biol, 2005, 47: 959–970[15]Wang A-G(王爱国), Luo G-H(罗广华). Quantitative relation between the reaction of hydroxylamine and superoxide amion radicals in plants. Plant Physiol Commun (植物生理学通讯), 1990, 26(6): 55–57 (in Chinese with English abstract) [16]Kantar M, Lucas S, Budak H. miRNA expression patterns of Triticum aestivum in response to shock drought stress. Planta, 2010, 233: 471–484[17]Kenneth J L, Thomas D S. Analysis of relative gene expression date using real-time quantitative PCR and the 2?ΔΔCT method. METHOD Sci, 2001, 25: 402–408[18]Patykowski J, Urbanek H. Activity of enzymes related to H2O2 generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea. J Phytopathol, 2003, 151: 153–161[19]Cordoba-Pedregosa M C, Cordoba F, Villalba J M, Gonzales-Reyes J A. Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzyme activities in onion roots. Plant Physiol, 2003, 131: 696–706[20]Zhao L-Y(赵丽英), Deng X-P(邓西平), Shan L(山仑). The response mechanism of active oxygen species removing system to drought stress. Acta Bot Boreali-Occident Sin (西北植物学报), 2005, 25(2): 413–418 (in Chinese with English abstract) [21]Diego M C, Oliva M A, Martinez C A, Cambraiaz C A, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot , 2003, 49: 69–76[22]Edelman M, Mattoo A K. D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res, 2008, 98: 609–620[23]Mulo P, Sakurai I, Aro E M. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta, 2012, 1817: 247–257[24]Komayama K, Khatoon M, Takenaka D, Horie J, Yamashita A, Yoshioka M, Nakayama Y, Yoshida M, Ohira S, Morita N, Velitchkova M, Enami I, Yamamoto Y. Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. Biochim Biophys Acta, 2007, 1767: 838–846[25]Qion Q M, Wei W, Yong H L, De Q L, Qi Z. Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J Plant Physiol, 2006, 163: 165–167 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[7] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[8] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[9] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[10] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[11] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[12] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[13] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[14] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[15] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
|