作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1325-1329.doi: 10.3724/SP.J.1006.2013.01325
• 研究简报 • 上一篇
杨晓钦1,张仁和1,*,薛吉全1,*,邰书静2,张兴华1,路海东1,郭艳萍1,郭德林1
YANG Xiao-Qin1,ZHANG Ren-He1,*,XUE Ji-Quan1,*,TAI Shu-Jing2,ZHANG Xing-Hua1,LU Hai-Dong1,GUO Yan-Ping1,GUO De-Lin1
摘要:
[1]Zhang S-H(张世煌), Xu Z-G(徐志刚). Cultival system changes and its effect on agricultural technique. Crops (作物杂志), 2009, (1): 1–3 (in Chinese) [2]Duvick D N. Genetic progress in yield of united states maize. Maydica, 2005, 50: 193−202[3]Ci X-K(慈晓科), Zhang S-H(张世煌), Xie Z-J(谢振江), Xu J-S(徐家舜), Lu Z-Y(卢振宇), Ru G-L(茹高林), Zhang D-G(张德贵), Li X-H(李新海), Xie C-X(谢传晓), Bai L(白丽), Li M-S(李明顺), Dong S-T(董树亭). Comparison of analysis method of genetic yield gain for the single-cross hybrids released during 1970s–2000s. Acta Agron Sin (作物学报), 2010, 36(12): 2185−2190 (in Chinese with English abstract)[4]Tollenaar M, Ahmadzadeh A, Lee A E. Physiological basis of heterosis for grain yield in maize. Crop Sci, 2004, 44: 2086–2094 [5]Duvick D N. What is yield? In: Developing Drought and Low N-Tolerant Maize. Proceedings of Symposium. El Batan, Mexico: CIMMYT, 1996. pp 332−335[6]Ci X K, Li M S, Liang X L, Xie Z J, Zhang D G, Li X H, Lu Z Y, Ru G L, Bai L, Xie C X, Hao Z F, Zhang S H. Genetic contribution to advanced yield for maize hybrids released from 1970 to 2000 in China. Crop Sci, 2011, 51: 13–20 [7]Zhang S-H(张世煌), Xu W-P(徐伟平), Li M-S(李明顺), Li X-H(李新海), Xu J-S(徐家舜). Challenge and opportunity in maize breeding program. J Maize Sci (玉米科学), 2008, 16(6): 1−5 (in Chinese with English abstract)[8]Tollernaar M, Lee A E. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica, 2006, 51: 399-408[9]Chen C-Y(陈传永), Hou Y-H(侯玉虹), Sun R(孙锐), Zhu P(朱平), Dong Z-Q(董志强), Zhao M(赵明). Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agron Sin (作物学报), 2010, 36(7): 1153−1160 (in Chinese with English abstract)[10]Wu Y S, Liu W G, Li X H, Li M S, Zhang D G, Hao Z F, Weng J F, Xu Y B, Bai L, Zhang S H, Xie C X. Low-nitrogen stress tolerance and nitrogen agronomic efficiency among maize inbreds: comparison of multiple indices and evaluation of genetic variation. Euphytica, 2011, 180: 281−290[11]Qi W(齐伟), Zhang J-W(张吉旺), Wang K-J(王空军), Liu P(刘鹏), Dong S-T(董树亭). Effect of drought stress on the grain yield and root physiological traits of maize varieties with different drought tolerance. Chin J Appl Ecol (应用生态学报), 2010, 21(1): 48−52 (in Chinese with English abstract)[12]Liu W, Tollenaar M. Response of yield heterosis to increasing plant density in maize. Crop Sci, 2009, 49: 1807–1816 [13]Liu W, Tollenaar M. Physiological mechanisms underlying heterosis for shade tolerance in maize. Crop Sci, 2009, 49: 1817–1826[14]Troyer A F. Adaptedness and heterosis in corn and mule hybrids. Crop Sci, 2006, 46: 528–543[15]Zhang W-X(张卫星), Zhao Z(赵致), Bai G-X(柏光晓), Fu F-J(付芳婧), Cao S-S(曹绍书). Response on water stress and low nitrogen in different maize hybrid varieties and evaluation for their adversity-resistance. Sci Agric Sin (中国农业科学), 2007, 40(7): 1361–1370 (in Chinese with English abstract)[16]Lian Y-X(连艳鲜), Li C-H(李潮海), Zhou S-M(周苏玫). Maize dry matter yield production and distribution characteristic. J Henan Agric Sci (河南农业科学), 2003, (7): 7–9 (in Chinese with English abstract)[17]Andrea K E, Otegui M E, Cirilo A G, Eyherabide G. Genotypic variability in morphological and physiological traits among maize inbred line-nitrogen response. Crop Sci, 2006, 46: 1266–1276 [18]Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci, 1999, 39: 1597−1640[19]Xue J-Q(薛吉全), Zhang R-H(张仁和), Ma G-S(马国胜), Lu H-D(路海东), Zhang X-H(张兴华), Li F-Y(李凤艳), Hao Y-C(郝引川), Tai S-J(邰书静). Effects of plant density, nitrogen application, and water stress on yield formation of maize. Acta Agron Sin (作物学报), 2010, 36(6): 1022−1029 (in Chinese with English abstract)[20]Valentinuz O, Tollernaar M. Vertical profile of leaf senescence during grain filling period in older and newer maize hybrids. Crop Sci, 2004, 44: 827–834[21]Betran F J, Beck D, Banziger M, Edmeades O G. Secondary traits in parental inbreds and hybrids under stress and non-stress environments in tropical maize. Field Crops Res, 2003, 83: 51–65[22]Banziger M, Edmeades O G, Lafitte R H. Physiological mechanisms contributing to the increasing N stress tolerance of tropical maize selected for drought tolerance. Field Crops Res, 2002, 75: 223–233 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[7] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[8] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[9] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[10] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[11] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[12] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[13] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[14] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[15] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
|