欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1325-1329.doi: 10.3724/SP.J.1006.2013.01325

• 研究简报 • 上一篇    

非生物胁迫对玉米杂交种及其亲本自交系产量性状的影响

杨晓钦1,张仁和1,*,薛吉全1,*,邰书静2,张兴华1,路海东1,郭艳萍1,郭德林1   

  1. 1西北农林科技大学农学院 / 农业部西北旱区玉米生物学与遗传育种重点实验室, 陕西杨凌 712100; 2陕西省咸阳市农业科学研究院, 陕西咸阳 712000
  • 收稿日期:2012-09-14 修回日期:2012-04-07 出版日期:2013-07-12 网络出版日期:2013-03-23
  • 通讯作者: 张仁和, E-mail: zhangrenhe1975@yohoo.com.cn; 薛吉全, E-mail: xjq2934@yahoo.com.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118604)和陕西省科技统筹项目(2010KTZB02-01-02)资助。

Effects of Abiotic Stress on Yield Traits of Maize Hybrids and Their Parental Inbred Lines

YANG Xiao-Qin1,ZHANG Ren-He1,*,XUE Ji-Quan1,*,TAI Shu-Jing2,ZHANG Xing-Hua1,LU Hai-Dong1,GUO Yan-Ping1,GUO De-Lin1   

  1. 1 College of Agronomy, Northwest A&F University / Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Yangling 712100, China; 2 Xianyang Academy of Agricultural Sciences, Xianyang 712000, China
  • Received:2012-09-14 Revised:2012-04-07 Published:2013-07-12 Published online:2013-03-23
  • Contact: 张仁和, E-mail: zhangrenhe1975@yohoo.com.cn; 薛吉全, E-mail: xjq2934@yahoo.com.cn

摘要:

以抗逆性较强玉米杂交种郑单958及其亲本(58、昌7-2)和抗逆性较差的杂交种陕单902及其亲本(K22K12)为材料, 在不同种植密度(45 000 hm-275 000 hm-2)、施氮量(112.5 kg hm-2337.5 kg hm-2)和灌水量(正常灌水和前期干旱控水)条件下, 分析了2个杂交种及其亲本产量及相关生理特性的变化规律。结果表明, 在非生物胁迫条件下(高密度、低氮和前期干旱控水), 与陕单902相比, 品种郑单958叶面积指数、SPAD值、花后干物质积累量和产量的中亲优势值分别增加18%9%28%22%; 与陕单902亲本(K22K12), 郑单958亲本(58、昌7-2)叶面积指数、SPAD值、花后干物质积累量和产量的中亲值分别增加45%36%51%45%; 郑单958产量的中亲值和中亲优势显著高于陕单902, 且中亲值增幅高于杂种优势值。玉米杂交种郑单958较陕单902增产的同时, 增强了对非生物逆境适应的能力。玉米杂交种的抗逆性来自亲本自交系。玉米杂交种抗逆性强在于增强了花后叶片光合能力(较高的LAISPAD), 促进了花后干物质积累。

关键词: 玉米, 杂交种, 自交系, 抗逆性, 产量

Abstract:

The field experiments were conducted to study the changes of grain yield and concerned physiological traits in stress-tolerant maize variety Zhengdan 958 and its parental inbred lines (Zheng 58 and Chang 7-2), as well as stress-sensitive maize variety Shaandan 902 and its parental inbred lines (K22, K12) under different treatments of density (45 000 and 75 000 plants ha1), nitrogen application (112.5 and 337.5 kg ha1), and irrigation (normal irrigation and controlling water at prophase). The results showed that there were little differences in yield, mean leaf area index after anthesis, mean SPAD after anthesis, post-anthesis dry matter accumulation and harvest index between Zhengdan 958 and Shaandan 902 under resource-replete conditions (low density, high nitrogen and normal irrigation). But there were great differences in all traits (besides harvest index) between Zhengdan 958 and Shaandan 902 under abiotic stress (high density, low nitrogen and drought stress), with much higher values in Zhengdan 958 than in Shaandan 902. Compared with Shaandan 902, mid-parent values of leaf area index, SPAD, post-anthesis dry matter accumulation and grain yield of Zhengdan 958 under abiotic stress (high density, low nitrogen and drought stress) increased by 45%, 36%, 51%, and 45%, respectively, and heterosis of Zhengdan 958 increased by 18%, 9%, 28%, and 22%, respectively. The mid-parent value of yield was much higher than heterosis of yield and both of them were higher in Zhengdan 958 than in Shaandan 902. So the maize variety Zhengdan 958 showed greater tolerance to abiotic stress which was mainly inherited from its parental inbred lines. Higher SPAD and LAI after anthesis contributed to post-anthesis dry matter accumulation, resulting in higher yield and higher stress tolerance.

Key words: Maize, Hybrids, Inbred lines, Stress tolerance, Grain yield

[1]Zhang S-H(张世煌), Xu Z-G(徐志刚). Cultival system changes and its effect on agricultural technique. Crops (作物杂志), 2009, (1): 1–3 (in Chinese)



[2]Duvick D N. Genetic progress in yield of united states maize. Maydica, 2005, 50: 193−202



[3]Ci X-K(慈晓科), Zhang S-H(张世煌), Xie Z-J(谢振江), Xu J-S(徐家舜), Lu Z-Y(卢振宇), Ru G-L(茹高林), Zhang D-G(张德贵), Li X-H(李新海), Xie C-X(谢传晓), Bai L(白丽), Li M-S(李明顺), Dong S-T(董树亭). Comparison of analysis method of genetic yield gain for the single-cross hybrids released during 1970s–2000s. Acta Agron Sin (作物学报), 2010, 36(12): 2185−2190 (in Chinese with English abstract)



[4]Tollenaar M, Ahmadzadeh A, Lee A E. Physiological basis of heterosis for grain yield in maize. Crop Sci, 2004, 44: 2086–2094



[5]Duvick D N. What is yield? In: Developing Drought and Low N-Tolerant Maize. Proceedings of Symposium. El Batan, Mexico: CIMMYT, 1996. pp 332−335



[6]Ci X K, Li M S, Liang X L, Xie Z J, Zhang D G, Li X H, Lu Z Y, Ru G L, Bai L, Xie C X, Hao Z F, Zhang S H. Genetic contribution to advanced yield for maize hybrids released from 1970 to 2000 in China. Crop Sci, 2011, 51: 13–20



[7]Zhang S-H(张世煌), Xu W-P(徐伟平), Li M-S(李明顺), Li X-H(李新海), Xu J-S(徐家舜). Challenge and opportunity in maize breeding program. J Maize Sci (玉米科学), 2008, 16(6): 1−5 (in Chinese with English abstract)



[8]Tollernaar M, Lee A E. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica, 2006, 51: 399-408



[9]Chen C-Y(陈传永), Hou Y-H(侯玉虹), Sun R(孙锐), Zhu P(朱平), Dong Z-Q(董志强), Zhao M(赵明). Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agron Sin (作物学报), 2010, 36(7): 1153−1160 (in Chinese with English abstract)



[10]Wu Y S, Liu W G, Li X H, Li M S, Zhang D G, Hao Z F, Weng J F, Xu Y B, Bai L, Zhang S H, Xie C X. Low-nitrogen stress tolerance and nitrogen agronomic efficiency among maize inbreds: comparison of multiple indices and evaluation of genetic variation. Euphytica, 2011, 180: 281−290



[11]Qi W(齐伟), Zhang J-W(张吉旺), Wang K-J(王空军), Liu P(刘鹏), Dong S-T(董树亭). Effect of drought stress on the grain yield and root physiological traits of maize varieties with different drought tolerance. Chin J Appl Ecol (应用生态学报), 2010, 21(1): 48−52 (in Chinese with English abstract)



[12]Liu W, Tollenaar M. Response of yield heterosis to increasing plant density in maize. Crop Sci, 2009, 49: 1807–1816



[13]Liu W, Tollenaar M. Physiological mechanisms underlying heterosis for shade tolerance in maize. Crop Sci, 2009, 49: 1817–1826



[14]Troyer A F. Adaptedness and heterosis in corn and mule hybrids. Crop Sci, 2006, 46: 528–543



[15]Zhang W-X(张卫星), Zhao Z(赵致), Bai G-X(柏光晓), Fu F-J(付芳婧), Cao S-S(曹绍书). Response on water stress and low nitrogen in different maize hybrid varieties and evaluation for their adversity-resistance. Sci Agric Sin (中国农业科学), 2007, 40(7): 1361–1370 (in Chinese with English abstract)



[16]Lian Y-X(连艳鲜), Li C-H(李潮海), Zhou S-M(周苏玫). Maize dry matter yield production and distribution characteristic. J Henan Agric Sci (河南农业科学), 2003, (7): 7–9 (in Chinese with English abstract)



[17]Andrea K E, Otegui M E, Cirilo A G, Eyherabide G. Genotypic variability in morphological and physiological traits among maize inbred line-nitrogen response. Crop Sci, 2006, 46: 1266–1276



[18]Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci, 1999, 39: 1597−1640



[19]Xue J-Q(薛吉全), Zhang R-H(张仁和), Ma G-S(马国胜), Lu H-D(路海东), Zhang X-H(张兴华), Li F-Y(李凤艳), Hao Y-C(郝引川), Tai S-J(邰书静). Effects of plant density, nitrogen application, and water stress on yield formation of maize. Acta Agron Sin (作物学报), 2010, 36(6): 1022−1029 (in Chinese with English abstract)



[20]Valentinuz O, Tollernaar M. Vertical profile of leaf senescence during grain filling period in older and newer maize hybrids. Crop Sci, 2004, 44: 827–834



[21]Betran F J, Beck D, Banziger M, Edmeades O G. Secondary traits in parental inbreds and hybrids under stress and non-stress environments in tropical maize. Field Crops Res, 2003, 83: 51–65



[22]Banziger M, Edmeades O G, Lafitte R H. Physiological mechanisms contributing to the increasing N stress tolerance of tropical maize selected for drought tolerance. Field Crops Res, 2002, 75: 223–233
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!