欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1425-1433.doi: 10.3724/SP.J.1006.2013.01425

• 耕作栽培·生理生化 • 上一篇    下一篇

芝麻耐旱性的鉴定方法及关联分析

黎冬华1,刘文萍2,张艳欣1,王林海1,危文亮1,高媛1,丁霞1,王蕾1,张秀荣1,*   

  1. 1中国农业科学院油料作物研究所 / 农业部油料作物生物学与遗传育种重点实验室,湖北武汉430062;2 山西省农业科学院经济作物研究所,山西汾阳032230
  • 收稿日期:2012-12-31 修回日期:2013-04-22 出版日期:2013-08-12 网络出版日期:2013-05-20
  • 通讯作者: 张秀荣, E-mail: zhangxr@oilcrops.cn, Tel: 027-86811836
  • 作者简介:张秀荣, E-mail: zhangxr@oilcrops.cn, Tel: 027-86811836
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB109304-2)和国家现代农业产业技术体系建设专项(CARS-15)资助。

Identification Method of Drought Tolerance and Association Mapping for Sesame (Sesamum indicum L.)

LI Dong-Hua1,LIU Wen-Ping2,ZHANG Yan-Xin1,WANG Lin-Hai1,WEI Wen-Liang1,GAO Yuan1,DING Xia1,WANG Lei1,ZHANG Xiu-Rong1   

  1. 1 Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China; 2 Industrial Crop Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032230, China
  • Received:2012-12-31 Revised:2013-04-22 Published:2013-08-12 Published online:2013-05-20
  • Contact: 张秀荣, E-mail: zhangxr@oilcrops.cn, Tel: 027-86811836
  • About author:张秀荣, E-mail: zhangxr@oilcrops.cn, Tel: 027-86811836

摘要:

为了解芝麻的耐旱性及获得与芝麻耐旱性相关的分子标记,在发芽期,采用不同浓度PEG 6000处理不同来源不同种皮颜色的10份芝麻品种,测定其形态特征和生理特征及各指标的差异显著性。结果表明,模拟芝麻干旱处理的最佳PEG 6000浓度为15%;综合各项指标的主成分分析、最优回归方程分析及相关性分析表明,相对成苗率可以作为芝麻发芽期耐旱性鉴定的关键指标;利用上述方法对216份核心种质资源群体进行耐旱性鉴定,相对成苗率耐旱系数值位于12.15%~93.52%,平均为60.74%,变异系数为25.22,变异丰富且呈正态分布;资源群体的耐旱性指标值与608个多态性标记位点的关联分析,获得与芝麻发芽期耐旱性有显著关联的标记30个(P<0.05),解释率在1.99%~4.96%之间,平均2.84%。试验表明,相对成苗率是最适且最方便的耐旱性鉴定指标,适用于芝麻资源的耐旱性鉴定。

关键词: 芝麻, 发芽期, PEG 6000, 耐旱鉴定, 关联分析

Abstract:

This research aims at understanding the drought tolerance of sesame germplasm and getting related molecular markers. Ten sesame varieties with different seed coat colors from separate origins were treated with PEG 6000 with different concentrations, and the relative shoot length, relative fresh weight, relative seedling rate and the relative vigor index of the ten sesame varieties were investigated and analyses. The result showed 15% PEG6000 was proper for testing sesame drought tolerance. A comprehensive analysis based on principal component, regression equation and correlation showed that the relative seedling rate could be used as a key indicator to identify drought tolerance of sesame at germination stage. Using the method above, drought tolerance of 216 core collections during germination period was studied, the drought tolerance coefficients of sprout percentage were from 12.15% to 93.52%, the average was 60.74%, the coefficient of variation was 25.22, sprout abundant variation and accordant with normal distribution; together with marker screening, 30 loci were significantly (P<0.05) associated with sesame drought tolerance at germination stage, explaining the phenotypic variation from 1.99% to 4.96%, with an average of 2.84%. So the relative seedling rate is the most suitable and most convenient drought tolerance index, which is suitable for drought tolerance identification of sesame resources.

Key words: Sesame, Germination, PEG 6000, Drought tolerance identification, Association mapping

[1]Yang M(杨湄), Huang F-H(黄凤洪). Situation, problem, development trend and suggestion of sesame industry in China. China Oils Fats (中国油脂), 2009, 34(1): 7–12 (in Chinese with English abstract)

[2]Wang L-H(王林海), Zhang Y-X(张艳欣), Wei W-L(危文亮), Zhang X-R(张秀荣). Investment of waterlogging and drought effect on the sesame production in China. Chin Agric Sci Bull (中国农学通报), 2011, 27(28): 301–306 (in Chinese with English abstract)

[3]Nemeth M, Janda T, Horvath E, Paldi E, Szalai G. Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci, 2002, 162: 569–574

[4]Fu B Y, Xiong J H, Zhu L H, Zhao X Q, Xu H X, Gao Y M, Li Y S, Xu J L, Li Z K. Identification of functional candidate genes for drought tolerance in rice. Mol Genet Genom, 2007, 278: 599–609

[5]Li C-D(李灿东), Jiang H-W(蒋洪蔚), Guo T(郭泰), Wang Z-X(王志新), Wu, X-H(吴秀红), Zheng W(郑伟), Chen Q-S(陈庆山), Hu G-H(胡国华). QTL identification of plant height and analysis of genotype to soybean in selection population. Soybean Sci (大豆科学), 2011, 30(1): 15–19 (in Chinese with English abstract)

[6]Pakniyat H, Tavakol E. RAPD markers associated with drought tolerance in bread wheat (Triticum aestivum L.). Pakistan J Biol Sci, 2007, 10: 3237–3239

[7]He H-Y(贺鸿雁), Sun C-H(孙存华), Du W(杜伟), Li Y(李扬). Effects of PEG 6000 osmotic stress on osmolytes of peanut seedling. Chin J Oil Crop Sci (中国油料作物学报), 2006, 28(1): 76–78 (in Chinese with English abstract)

[8]Li Z(李震), Yang C-J(杨春杰), Zhang X-K(张学昆), Zou C-S(邹崇顺), Cheng Y(程勇), Zheng P-Y(郑普英), Li G-Y(李桂英). Evaluation of drought tolerance in rapeseed (Brassica napus L.) during germination under PEG6000 stress. Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(4): 438–442 (in Chinese with English abstract)

[9]Chazen O, Hartung W, Neumann P M. The different effects of PEG 6000 and NaCl on leaf development are associated with differential inhibition of root water transport. Plant Cell Environ, 1995, 18: 727–735

[10]Dhanda S S, Sethi G S, Behl R K. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci, 2004, 190: 6–12

[11]Ma X-L(马向丽), Bi Y-F(毕玉芬), Huang M(黄梅), Liu Q(刘倩), Fan M(樊梅). Effects of GA3 and PEG on germination of Setaria sphacelata seeds. Chin J Trop Crops (热带作物学报), 2009, 30(10): 1479–1483 (in Chinese with English abstract)

[12]Zhang Y(张燕), Fang L(方力), Li T-F(李天飞), Wu Y-C(吴业池), Feng Y-X(冯永新). Effects of seed soaking in PEG on seed vigor and protective enzyme activities of tobacco seedlings. J Yunnan Agric Univ (云南农业大学学报), 2004, 19(1): 36–40 (in Chinese with English abstract)

[13]Zhang X-Y(张雪妍), Liu C-L(刘传亮), Wang J-J(王俊娟), Li F-G(李付广), Ye W-W(叶武威). Evaluation to the drought tolerance of cotton by PEG water-stress. Cotton Sci (棉花学报), 2007, 19(3): 205–209 (in Chinese with English abstract)

[14]Yuan Y(袁媛), Li N(李娜), Shao A-J(邵爱娟), Li H(李化), Huang L-Q(黄璐琦). Effect of PEG 6000 on seed germination and seedling growth of Scutellaria baicalensis. Chin Traditional Herbal Drugs (中草药), 2008, 39(2): 269–272 (in Chinese with English abstract)

[15]Zhang C-N(张晨妮), Zhou Q-P(周青平), Yan H-B(颜红波), Liu W-H(刘文辉). Effects of PEG on drought resistance of Elymus sibiricus germplasm at germination stage. Pratac Sci (草业科学), 2010, 27(1): 119–123 (in Chinese with English abstract)

[16]Chen J-W(陈郡雯), Wu W(吴卫), Zheng Y-L(郑有良), Hou K(侯凯), Xu Y-W(徐应文), Zai J-Y(翟娟园). Drought resistance of Angelica dahurica during seedling stage under polyethylene glycol (PEG-6000)-simulated drought stress. China J Chin Materia Medica (中国中药杂志), 2010, 35(2): 149–153 (in Chinese with English abstract)

[17]Ahmad S, Ahmad R, Ashraf M Y, Ashraf M, Waraich E A. Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pak J Bot, 2009, 41(2): 647–654

[18]Li W-R(李文娆), Zhang S-Q(张岁岐), Shan L(山仑), Zhang T(张彤), Shan Y(山颖). Effect of water stress mimicked by PEG-6000 and rehydration on eco-physiological characteristics of leaf and stem in alfalfa seedlings. Acta Agric Boreali-occidents Sin (西北农业学报), 2008, 17(6): 247–252 (in Chinese with English abstract)

[19]Dai G-X(戴高兴), Peng K-Q(彭克勤), Xiao L-T(萧浪涛), Deng G-F(邓国富). Effect of drought stress simulated by PEG on malonaldehyde, proline contents and superoxide dismutase activity in low potassium tolerant rice seedlings. Chin J Rice Sci (中国水稻科学), 2006, 20(5): 557–559 (in Chinese with English abstract)

[20]Xu G-F(许桂芳), Zhang C-Y(张朝阳), Xiang Z-X(向佐湘). Comprehensive evaluation of drought resistance of four Lysimachia species by using subordinate function. Acta Agric Zhejiangensis (浙江农业学报), 2009, 21(1): 59–62 (in Chinese with English abstract)

[21]Sari-Gorla M, Krajewski P, Fonzo Nd, Villa M, Frova C. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor Appl Genet, 1999, 99: 289–295

[22]Bolanos J, Edmeades G O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res, 1996, 48: 65-80

[23]Wang X-L(王晓玲). Effect of water stress on proline content of sesame florescence. Anhui Agric Sci Bull (安徽农学通报), 2007, 13(20): 66–67 (in Chinese with English abstract)

[24]Chen P(陈培), Wang Q(汪强), Zhao L(赵莉), Tian D-F(田东风). Effect of water stress on seed germination characteristics of sesame (Sesamum indicum L.). Seed (种子), 2012, 31(4): 83–85 (in Chinese with English abstract)

[25]Michel B E, Kaufmann M R. The osmotic potential of Polyethylene Glycol 6000. Plant Physiol, 1973, 51: 914–916

[26]Li Z-G(李忠光), Li J-H(李江鸿), Du C-K(杜朝昆), Huang H-D(黄号栋), Gong M(龚明). Simultaneous measurement of five antioxidant enzyme activities using a single extraction system. J Yunnan Norm Univ (云南师范大学学报), 2002, 22(6): 44–48 (in Chinese with English abstract)

[27]Zhang D-Z(张殿忠), Wang P-H(汪沛洪), Zhao H-X(赵会贤). Determination of the content of free proline in wheat leaves. Plant Physiol Commun (植物生理学通报), 1990, (4): 62–65 (in Chinese with English abstract)

[28]Zhao S-J(赵世杰), Xu Z-C(许长成), Zou Q(邹琦), Meng Q-W(孟庆伟). Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiol Commun (植物生理学通报), 1991, 30(3): 207–210 (in Chinese with English abstract)

[29]Leul M, Zhou W J. Alleviation of waterlogging damage in winter rape by uniconazole application: effects on enzyme activity, lipid peroxidation, and membrane integrity. J Plant Growth Regul, 1999, 18: 9–14

[30]Lü H-X(吕海霞), Zhang Y-X(张艳欣), Wang L-H(王林海), Zhang X-Y(张晓燕), Zhang X-R(张秀荣). Methods for efficient extraction of sesame genomic DNA and rapid sliver staining of PAGE. Chin Agric Sci Bull (中国农学通报), 2010, 26(15): 75–77 (in Chinese with English abstract)

[31]Zhang Y X, Zhang X R, Hua W, Wang L H, Che Z. Analysis of genetic diversity among indigenous landraces from sesame (Sesamum indicum L.) core collection in China as revealed by SRAP and SSR markers. Genes & Genom, 2010, 32: 207–215

[32]Sun J(孙 建), Tu Y-Q(涂玉琴), Zhang X-R(张秀荣). DNA fingerprint analysis in space-induced sesame mutant lines. Sci Agric Sin (中国农业科学), 2007, 40(12): 2696–2701 (in Chinese with English abstract)

[33]Zhang Y-X(张艳欣), Zhang X-R(张秀荣), Che Z(车卓), Wang L-H(王林海). Genetic diversity analysis of core collection of white coat sesame seed (Sesamum indicum L.) in China using SRAP markers. Chin J Oil Crop Sci (中国油料作物学报), 2010, 32(1): 46–52 (in Chinese with English abstract)

[34]Yeh F C, Boyle T J B. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J Bot, 1997, 129: 157

[35]Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635

[36]Pritchard J K, Wen W. Documentation for STRUCTURE software: Version 2.2. Chicago: The University of Chicago Press, 2007

[37]Zhang Y-X(张艳欣), Wang L-H(王林海), Li D-H(黎冬华), Wei W-L(危文亮), Gao Y(高媛), Zhang X-R(张秀荣). Association mapping of sesame (Sesamum indicum L.) resistance to Macrophomina phaseolina and identification of resistant accessions. Sci Agric Sin (中国农业科学), 2012, 45(13): 2580–2591 (in Chinese with English abstract)

[38]Tang Q-Y(唐启义), Feng M-G(冯明光). Practical Statistics and Computer Processing Platform (实用统计分析及其计算机处理平台). Beijing: Science Press, 2007 (in Chinese)

[39]Zhou G-S(周广生), Mei F-Z(梅方竹), Zhou Z-Q(周竹青), Zhu X-T(朱旭彤). Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties. Sci Agric Sin (中国农业科学), 2003, 36(11): 1378–1382 (in Chinese with English abstract)

[40]Yang Y-P(杨剑平), Chen X-Z(陈学珍), Wang W-P(王文平), Li Y(李杨). The establishment of the simulated system of drought for soybean in laboratory. Chin Agric Sci Bull (中国农学通报), 2003, 19(3): 65–68 (in Chinese with English abstract)

[41]Guo X-S(郭雪松), Tang Z-L(唐章林). Evaluation of drought tolerance of 42 rapeseed genotypes in different PEG concentration treatments. J Southwest Univ (西南大学学报), 2009, 31(10): 1–7 (in Chinese with English abstract)

[42]Li F-H(李凤海). Selection of Drought Resistance Index and Genetic Research of Maize Breeding (玉米抗旱性指标的筛选及其遗传特性研究). Shenyang: Shenyang Agricultural University Press, 2011 (in Chinese)

[43]Jia D-S(贾东升), Mao X-G(毛新国), Jing R-L(景蕊莲), Zhang X-K(张晓科), Chang X-P(昌小平). Cloning and expression of transcription factor TaMyb2s in wheat. Acta Agron Sin (作物学报), 2008, 34(8): 1323–1329 (in Chinese with English abstract)

[44]Pelleschi S, Rocher J P, Prioul J L. Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Environ, 1997, 20: 493–503

[45]Kishor P B K, Hong Z, Miao G H. Overexpression of Δ-pyrroline-S-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995, 108: 1387–1394

[46]Pilon-Smits E A H, Ebskamp M J M, Paul M J. Improved performance of transgenic fruction-accumulating tobacco under drought stress. Plant Physiol, 1995, 107: 125–130

[47]Wang L-H(王林海), Zhang Y-X(张艳欣), Wei W-L(危文亮), Zhang X-R(张秀荣). Investment of waterlogging and drought effect on the sesame production in China. Chin Agric Sci Bull (中国农学通报), 2011, 27(28): 301–306 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[4] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[5] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[6] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[7] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[8] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[9] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[10] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[11] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[12] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[13] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[14] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[15] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!