欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1582-1593.doi: 10.3724/SP.J.1006.2013.01582

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

分子标记辅助选育水稻抗白叶枯病和稻瘟病多基因聚合恢复系

潘晓飚1,**,陈凯2,3,**,张强2,3,黄善军1,谢留杰1,李美4,孟丽君4,徐正进3,徐建龙2,4,*,黎志康2,4   

  1. 1浙江省台州市农业科学研究院, 浙江临海 317000; 2中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程, 北京 100081;
    3沈阳农业大学 / 农业部作物生理生态遗传育种重点开放实验室, 辽宁沈阳 110161; 4中国农业科学院深圳生物育种创新研究院, 广东深圳 518083
  • 收稿日期:2013-01-14 修回日期:2013-06-04 出版日期:2013-09-12 网络出版日期:2013-07-09
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)(2011-G2B), 国家高技术研究发展计划(863计划)(2012AA101101)和浙江省公益技术研究项目(2012C22033)资助。

Developing Restorer Lines Pyramiding Different Resistant Genes to Blast and Bacterial Leaf Blight by Marker-assisted Selection in Rice

PAN Xiao-Biao1,**,CHEN Kai2,3,**,ZHANG Qiang2,3,HUANG Shan-Jun1,XIE Liu-Jie1,LI Mei4,Meng Li-Jun2,4,XU Zheng-Jin3,XU Jian-Long2,4,*,LI Zhi-Kang2,4   

  1. 1 Taizhou Academy of Agricultural Sciences of Zhejiang Province, Linhai 317000, China; 2 Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Shenyang Agricultural University / Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang 110161, China; 4 Shenzhen Institute of Biological Breeding & Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518083, China?
  • Received:2013-01-14 Revised:2013-06-04 Published:2013-09-12 Published online:2013-07-09

摘要:

利用分子标记辅助选择和田间鉴定选择相结合的方法, 将三黄占2号的抗稻瘟病主基因Pi-GD-1(t)Pi-GD-2(t)和主效QTL GLP8-6(t) (分别简称G1G2G8)及抗白叶枯病基因Xa23导入到明恢86、蜀恢527和浙恢79543个骨干中籼恢复系, 通过复交进行基因聚合, 获得5个带有抗稻瘟病兼抗白叶枯病的双基因或多基因聚合系明恢86-G1-G2-Xa23、蜀恢527-G2-Xa23、明浙-G2-G8-Xa23-1明浙-G2-G8-Xa23-2和明浙-G1-G2-G8-Xa23。以上5个抗病基因聚合改良系对稻瘟病的抗谱与抗源品种相仿或更宽, 改良系和与不育系II-32A配制的测交种对白叶枯病菌的抗谱与供体亲本IRBB23一致, 测交种在不接种白叶枯病菌条件下的产量和结实率与原来的恢复系及相应杂交种相仿, 但在接种条件下带有Xa23基因的恢复系及测交种的结实率、千粒重和产量明显优于原来的恢复系及相应杂交种。研究表明, 抗稻瘟病基因和抗白叶枯基因Xa23在不同恢复系背景下的抗性表达完全, 对恢复系稻瘟病以及白叶枯病改良的效果明显。对分子标记复交改良恢复系的抗病性进行了讨论。

关键词: 水稻恢复系, 稻瘟病, 白叶枯病, 抗性改良, 标记辅助选择

Abstract:

The novel blast resistance genes, Pi-GD-1(t), Pi-GD-2(t), and GLP8-6(t) from rice variety Sanhuangzhan2 (here abbreviated them as G1, G2 and G8, respectively) and bacterial blight (BB) resistance gene, Xa23 were introgressed into three elite restorer lines (Minghui86, Shuhui527 and Zhehui7954) by marker-assisted pyramiding breeding approaches in combination with artificial inoculation and stringent phenotypic selections. The five derived blast and bacterial blight resistance restorer lines, Minghui86-G1-G2-Xa23, Shuhui527-G2-Xa23, Mingzhe-G2-G8-Xa23-1, Mingzhe-G2-G8-Xa23-2 and Mingzhe-G1-G2-G8-Xa23, demonstrated similar or wider blast resistance spectrum as compared with the donor parent, Sanhuangzhan 2. The five derived BB resistant restorer lines and their derived hybrid combinations with II-32A demonstrated similar BB resistance spectrum to the donor parent, IRBB23. The newly developed BB resistant restorers and their derived hybrids were identical to their respective original versions for agronomic traits especially under disease free condition. However, under severe disease condition, the five BB resistant restorer lines exhibited significantly higher grain weight, spikelet fertility and grain yield as compared with the respective original restorer lines, thus further resulting in significantly higher grain yields in BB resistant hybrids than in their respective original hybrids. Improvement of resistance of blast and BB for restorer lines by molecular marker-assisted pyramiding was discussed.

Key words: Rice restorer line, Blast, Bacterial leaf blight, Resistance improvement, Marker assisted selection (MAS)

[1]Dong J-X(董继新), Dong H-T(董海淘), Li D-B(李德葆). Recent Advances on Rice Blast Disease Resistance. Journal of Agricultural Biotechnolgy (农业生物技术学报), 2000, 8(1): 99–102 (in Chinese with English abstract)



[2]Ou S H. Rice Diseases, 2nd edn. Kew, England: Common wealth Mycological Institute, 1985



[3]Singh G P, Srivastava M K, Singh R V. Variation and qualitative losses caused by bacterial blight in difference rice varieties. Indian Phytopath, 1997, 30: 180–185



[4]Zhai W-X(翟文学), Zhu L-H(朱立煌). Rice bacterial blight resistance genes and their utilization in molecular breeding. Prog Biotechnol (生物工程进展), 1999, 19(6): 9–15 (in Chinese with English abstract)



[5]China Rice Data Center(国家水稻数据中心). Gene Data Bank (基因数据库). 2012. http://www.ricedata.cn/gene/



[6]Bin L, Shao H Z, Xiao Y Z, Yang Q Y, Shang Z W, Man T M, Ramil M, Jan L, Tom M, Hei L. Candidate defense genes as predictors of quantitative blast resistance in rice. Mol Plant-Microbe Interactions, 2004, 17: 1146–1152



[7]Wu S-Z(伍尚忠), Zhu X-Y(朱小源), Liu B(刘斌), Yang Q-Y(杨祁云), Zhang S-H(张少红), Leung H. Genetic analysis and evaluation of durable resistance to blast in indica cultivar sanhuangzhan2. Sci Agric Sin (中国农业科学), 2004, 37(4): 528–534 (in Chinese with English abstract)



[8]Xu M-R(许美荣), Zhou Y-L(周永力), Li Z-K(黎志康). Research advances in on resistance genetics of rice bacterial blight and bacterial leaf streak. J Plant Genet Resour (植物遗传资源学报), 2012, 13(3): 370–375 (in Chinese with English abstract)



[9]Zhang Q(章琦). Genetics and improvement of resistance to bacterial blightin hybrid rice in China. Chin J Rice Sci (中国水稻科学), 2009, 23(2): 111–119 (in Chinese with English abstract)



[10]Zhang Q(章琦), Wang C-L(王春连), Zhao K-J(赵开军), Yang W-C(杨文才), Qiao F(乔枫), Zhou Y-L(周永力), Jiang Q-X(江祺祥), Liu G-C(刘古春). Development of near-isogenic line CBB23 with a new resistance gene to bacterial blight in rice and its application. Chin J Rice Sci (中国水稻科学), 2002, 16(3): 206–210 (in Chinese with English abstract)



[11]Zhai W X, Wang W M, Zhou Y L, Li X B, Zheng X W, Zhang Q, Wang G L, Zhu L H. Breeding bacterial blight-resistant hybrid rice with the cloned bacterial blight resistance gene Xa21. Mol Breed, 2001, 8: 285–293



[12]Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64



[13]Liang Y-T(梁云涛), Wang C-L(王春连), Liu P-Q(刘丕庆), Fu Q(傅强), Kshirod K J, Zhao K-J(赵开军). Research and application status of rice genes resistance to brown planthopper. J Plant Genet Resour (植物遗传资源学报), 2008, 9(1): 119–124 (in Chinese with English abstract)



[14]Narayanan N N, Baisakh N, Vera Cruz C M, Gnanamanickam S S, Datta K, Datta S K. Molecular breeding for the development of blast and bacterial blight resistance in rice cv. IR50. Crop Sci, 2002, 42: 2072–2079



[15]Ni D-H(倪大虎), Yi C-X(易成新), Li L(李莉), Wang X-F (汪秀峰), Wang W-X (王文相), Yang J-B(杨剑波). Pyramiding Xa21 and Pi9(t) in rice by marker-assisted selection. Mol Plant Breed (分子植物育种), 2005, 3(3): 329–334 (in Chinese with English abstract)



[16]Ni D-H(倪大虎), Yi C-X(易成新), Yang J-B(杨剑波), Wang X-F(汪秀峰), Zhang Y(张毅), Zhang Q(章琦), Wang C-L(王春连), Zhao K-J(赵开军), Wang W-X(王文相), Li L(李莉). Pyramiding Xa21 and Pi9(t) genes by molecular marker-assisted selection.. Mol Plant Breed (分子植物育种), 2007, 5(4): 491–496 (in Chinese with English abstract)



[17]Ni D-H(倪大虎), Yi C-X (易成新), Li L(李莉), Wang X-F (汪秀峰), Zhang Y (张毅), Zhao K-J(赵开军), Wang C-L(王春连), Zhang Q(章琦), Wang W-X(王文相), Yang J-B(杨剑波). Developing rice lines resistant to bacterial blight and blast with molecular marker-assisted selection. Acta Agron Sin (作物学报), 2008, 34(1): 100–105 (in Chinese with English abstract)



[18]Chen J-M(陈建民), Fu Z-Y(付志英), Quan B-Q(权宝权), Tian D-G(田大刚), Li G (李刚), Wang F (王锋). Breeding hybrid rice restoring line with double resistance to rice blast and bacterial blight by marker assisted selection. Mol Plant Breed (分子植物育种), 2009, 7(3): 465–470 (in Chinese with English abstract)



[19]Liang H-F(梁海福), Yan Y(阎勇), Qin G(秦钢), Tang M(唐梅), Mo H-L(莫海玲), Yu S-B(于松保).Pyramiding Xa4, Xa23 and Pi9 genes by molecular marker-assisted selection. Guangxi Agric Sci (广西农业科学).2010, 41(5): 408–411(in Chinese with English abstract)



[20]Wang J(王军), Yang J(杨杰), Chen Z-D(陈志德), Fan F-J(范方军), Zhu J-Y(朱金燕), Yang J-H(杨金欢), Zhong W-G(仲维功). Pyramiding resistance gene Pi-ta, Pi-b, and Stv-bi by marker-assisted selection in rice(Oryza sativa L.). Acta Agron Sin (作物学报), 2011, 37(6): 975–981 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[3] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[4] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[5] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[6] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[7] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[8] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[9] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[10] 郑凯丽, 纪志远, 郝巍, 唐永超, 韦叶娜, 胡运高, 赵开军, 王春连. 水稻白叶枯病感病相关基因Xig1的分子鉴定及抗病资源创制[J]. 作物学报, 2020, 46(9): 1332-1339.
[11] 胡茂龙, 程丽, 郭月, 龙卫华, 高建芹, 浦惠明, 张洁夫, 陈松. 油菜抗咪唑啉酮类除草剂基因标记的开发与应用[J]. 作物学报, 2020, 46(10): 1639-1646.
[12] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[13] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
[14] 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769.
[15] 肖湘谊,史学涛,盛浩闻,刘金灵,肖应辉. 水稻抗稻瘟病基因Pi47的精细定位和候选基因分析[J]. 作物学报, 2018, 44(7): 977-987.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!