欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1983-1991.doi: 10.3724/SP.J.1006.2013.01983

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦品种(系)抗叶锈病基因Lr10位点基因型的多样性

韩淑晓1,刘全兰2,董洁1,陈建省1,田纪春1,*   

  1. 1 山东农业大学作物生物学国家重点实验室 / 山东省作物生物学重点实验室, 山东泰安271018; 2青岛科技大学化工学院生物工程与技术系, 山东青岛266042
  • 收稿日期:2013-01-24 修回日期:2013-06-24 出版日期:2013-11-12 网络出版日期:2013-08-12
  • 通讯作者: 田纪春, E-mail: jctian@sdau.edu.cn, Te1: 0538-8242040
  • 基金资助:

    本研究由国家自然科学基金项目(31171554)和国家转基因生物新品种培育科技重大专项(2011ZX08002-003)资助。

Genotypic Diversity at the Lr10 Locus for Leaf Rust Resistance in Various Hexaploid Wheat Varieties (lines)

HAN Shu-Xiao1,LIU Quan-Lan2,DONG Jie1,CHEN Jian-Sheng1,TIAN Ji-Chun1,*   

  1. 1 State Key Laboratory of Crop Biology / Shandong Provincial Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China;
    2 Department of Bioengineering and Biotechnology, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
  • Received:2013-01-24 Revised:2013-06-24 Published:2013-11-12 Published online:2013-08-12
  • Contact: 田纪春, E-mail: jctian@sdau.edu.cn, Te1: 0538-8242040

摘要:

小麦抗叶锈病基因Lr10的表达需与其紧密连锁的RGA2基因调控, 按照这2个基因的连锁关系, Lr10基因位点分成H1H2两个古单倍型。为揭示我国小麦品种中Lr10的遗传多样性, 189个来自12省的小麦育成品种和58个品系的该基因位点变异进行了鉴定分析。绝大多数供试品种()H2古单倍型, 其频率在育成品种和品系中分别为95.2% (180/189)96.6% (56/58)。这2种古单倍型可进一步分为9种单倍型亚型, 其中H1-2H2-4H2-5H2-6H2-7亚型为首次报道。育成品种包含所有单倍型亚型, H2-1频率最高(69.3%), H2-3H2-6频率最低(0.5%); 而在选育品系中仅检测到5种单倍型亚型, 其中H2-1频率最高(27.6%), H1-2频率最低(3.5%)H2-1H2-2型外, 其他亚型与育成地显著相关(P < 0.05)。本研究结果支持Lr10基因位点的古单倍型和单倍型亚型在育种中保持相对稳定的推断, 同时由于育种过程中持续重组和变异而产生了新的单倍型亚型, 而且重组可以发生在H2H1两种古单倍型之间。在现代育成品种和品系中, H1古单倍型所占比例已降至5%以下, 应加以保护

关键词: 小麦, Lr10, 古单倍型, 单倍型亚型, 多样性

Abstract:

Genotypes H1 and H2 are two ancient haplotypes on Lr10 locus, which is a resistance gene to wheat leaf rust. They are identified based on the presence of both Lr10 and RGA2 in full length (H1), and the absence of Lr10 and chromatin rearrangement of RGA2 (H2) due to chromosome 1AS reorganization during species evolution. Both haplotypes contain several subhaplotypes. To understand genetic diversity on Lr10 locus, we tested the frequencies of H1 and H2 haplotypes and their subhaplotypes in 189 wheat cultivars and 58 breeding lines originating from various provinces of China. The H2 haplotype was dominant in the developed cultivars and breeding lines with the frequencies of 95.2% (180/189) and 96.6% (56/58), respectively. Five novel subhaplotypes were detected in the developed cultivars, namely H1-2, H2-4, H2-5, H2-6, and H2-7. In cultivars, subhaplotype H2-1 was the most frequent (69.3%), whereas subhaplotypes H2-3 and H2-6 had the lowest frequencies (0.5%). Among the five subhaplotypes detected in breeding lines, subhaplotype H2-1 had the highest frequencies (27.6%), whereas subhaplotypes H1-2 was the least frequent (3.5%). Interestingly, the subhaplotypes except for H2-1 and H2-2 were highly breeding location-dependent (P < 0.05). These results support the hypothesis that both haplotypes have been maintained through a balanced polymorphism mechanism during wheat domestication. Furthermore, the five novel subhaplotypes suggest that genetic diversities resulting from recombination and other types of chromatin reorganizations (e.g., origin of the H2 haplotype and polymorphism for the Lr10 locus) have been going on since the formation of the hexaploid wheat. Significantly, identification of the H1-2 subhaplotype is a clear evidence of occurrence of recombination between the two ancient haplotypes, which disagrees with the previous notion. Importantly, because the frequencies of H1 is lower than 5% in developed cultivars and breeding lines, actions for protecting germplasm with the H1 haplotype are highly recommended.

Key words: Wheat, Lr10, Ancient haplotype, Subhaplotype, Diversity

[1]Komer J A. Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol, 1996, 34: 435–455



[2]Hu Y-Y(胡亚亚), Zhang N(张娜), Li L-M(李林懋), Yang W-X(杨文香), Liu D-Q(刘大群). Analysis of wheat leaf rust resistance genes in 14 wheat cultivars or lines. Acta Agron Sin (作物学报), 2011, 37(12): 2158–2166 (in Chinese with English abstract)



[3]Feuillet C, Gabriele S, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J, 1997, 11: 45–52



[4]Sela H, SpiridonL N, Petrescu A J, Akerman M, Mandel-Gutfreund Y, Nevo E, Loutre C, Keller B, Schulman A H, Fahima T. Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) Lr10 coiled coil (CC) and leucine-rich repeat (LRR) domains. Mol Plant Pathol, 2012, 13: 276–287



[5]Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B. Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploids wheat (Triticum aestivum L.). Proc Natl Acad Sci USA, 2000, 97: 13436–13441



[6]Isidore E, Scherrer B, Chalhoub B, Feuillet C, Keller B. Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Res, 2005, 15: 526–536



[7]Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13–15



[8]Scherrer B, Keller B, Feuillet C. Two haplotypes of resistance gene analogs have been conserved during evolution at the leaf rust resistance locus Lr10 in wild and cultivated wheat. Funct Integrat Genomic, 2002, 2: 40–50



[9]Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA, 2003, 100: 15253–15258



[10]Cody R. Learning SAS by Example: A Programmer’s Guide, SAS Institute Inc., Cary, NC, USA, 2007



[11]Nalam V J, Vales M I, Watson C J W, Kianian S F, Riera-Lizarazu O. Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theor Appl Genet, 2006, 112: 373–381



[12]Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 2007, 316: 1862–1866



[13]Loutre C, Wicker T, Travella S, Galli P, Scofield S, Fahima T, Feuillt C, Keller B. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetrsploid and hexaploid wheat. Plant J, 2009, 60: 1043–1054



[14]Chen W-Q (陈万权), Wang J-X (王剑雄). Genes for leaf and stem rust resistance in 76 wheat genetic resources. Acta Agron Sin (作物学报), 1997, 23(6): 655–663 (in Chinese with English abstract)



[15]Ding Y-H(丁艳红), Liu H(刘欢), Shi L-H(师丽红), Wen X-L(温晓蕾), Zhang N(张娜), Yang W-X(杨文香), Liu D-Q(刘大群). Wheat leaf rust resistance in 28 Chinese wheat mini-core collections. Acta Agron Sin (作物学报), 2010, 36(7): 1126–1134 (in Chinese with English abstract)



[16]Stahl E A, Dwyer G, Mauricio R, Kreitman M, Bergelson J. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature, 1999, 400: 667–671



[17]Holub E B. The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet, 2001, 2: 516–527



[18]Michelmore R W, Meyers B C. Clusters of resistance genes in plants evolve by divergent selection and a birth and death process. Genome Res, 1998, 8: 1113–1130



[19]Takken F, Rep M. The arms race between tomato and Fusarium oxysporum. Mol Plant Pathol, 2010, 11: 309–314



[20]Sela H, Loutre C, Keller B, Schulman A, Nevo E, Korol A, Fahima T. Rapid linkage disequilibrium decay in the Lr10 gene in wild emmer wheat (Triticum dicoccoides) populations. Theor Appl Genet, 2011, 122: 175–187

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!