作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1992-1999.doi: 10.3724/SP.J.1006.2013.01992
陈现朝,黄立钰,周永力
CHEN Xian-Chao,HUANG Li-Yu,ZHOU Yong-Li*
摘要:
拟南芥类受体激酶BAK1 (BRI1-associated kinase 1)在调控生长发育和免疫信号中有十分重要的作用。本研究选择水稻中BAK1的同源基因LOC_Os03g49620.4, 将它暂命名为OsBAK1L并探索其结构和功能。结果表明,OsBAK1L定位于细胞膜,是SERKL (Somatic embryogenesis receptor kinase Like)家族成员。OsBAK1L-RNAi转基因水稻中OsBAK1L下调表达。接种细菌性条斑病菌(Xanthomonas oryzae pv. oryzicola)菌株Rs105后,转基因苗与受体9804-Rxo1都表现过敏性反应(hypersensibility response,HR),但转基因苗HR推迟。此外,HR相关基因OsMPK13 (Mitogen activated protein kinase 13)表达模式与HR变化趋势一致,在转基因苗中皆出现推迟现象。上述结果表明:OsBAK1L可能通过调节OsMPK13表达而推迟9804-Rxo1对细菌性条斑病菌的HR反应。
[1]Shiu S H, Bleecker A B. Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE, 2001, 113: re22. DOI: 10.1126/scisignal.1132001re22[2]Shiu S H, Karlowski W M, Pan R, Tzeng Y H, Mayer K F X, Li W H. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell, 2004, 16: 1220–1234[3]Chinchilla D, Shan L, He P, de Vries S, Kemmerling B. One for all: the receptor-associated kinase BAK1. Trends Plant Sci, 2009, 14: 535–541[4]Li J. Multi-tasking of somatic embryogenesis receptor-like protein kinases. Curr Opin Plant Biol, 2010, 13: 509–514[5]Postel S, Küfner I, Beuter C, Mazzotta S, Schwedt A, Borlotti A, Halter T, Kemmerling B, Nürnberger T. The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur J Cell Biol, 2010, 89: 169–174[6]Yang D H, Hettenhausen C, Baldwin I T, Wu J. The multifaceted function of BAK1/SERK3: plant immunity to pathogens and responses 1 to insect herbivores. Plant Signal Behav, 2011, 6: 1322–1324[7]Ito Y, Takaya K, Kurata N. Expression of SERK family receptor-like protein kinase genes in rice. Biochim Biophys Acta, 2005, 1730: 253–258[8]Hu H, Xiong L, Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta, 2005, 222: 107–117[9]Singla B, Khurana J P, Khurana P. Structural characterization and expression analysis of the SERK/SERL gene family in rice (Oryza sativa). Int J Plant Genomics, 2009, DOI: 10.1155/2009/539402[10]Li D, Wang L, Wang M, Xu, Yun Y, Luo W, Liu Y J, Xu Z H, Li J, Chong K. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J, 2009, 7: 791–806[11]Park H, Ryu H, Kim B, Kim S Y, Yoon I S, Nam K H. A subset of OsSERK genes, including OsBAK1, affects normal growth and leaf development of rice. Mol Cells, 2011, 32: 561–569[12]Xu M-R(许美容). Analysis of Molecular Pathways Mediated by Nonhost Resistance Gene to Bacterial Leaf Streak and Identification of Bacterial Blight Resistant Lines and QTLs. PhD Disseration of Chinese Academy of Agricultural Sciences, 2011. pp 24–47 (in Chinese with English abstract) [13]Karimi M, Inzé D, Depicker A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci, 2002, 7: 193–195[14]Travella S, Keller B. Down-regulation of gene expression by RNA-induced gene silencing. In: Jones H D, Shewry P R, eds. Transgenic Wheat, Barley and Oats. New York: Humana Press, 2009. pp 185–199[15]Hardham A. Confocal microscopy in plant–pathogen interactions. In: Bolton M D, Thomma B P H J, eds. Plant Fungal Pathogens. New York: Humana Press, 2012. pp 295–309[16]Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol, 2009, 60: 379–406[17]Shrawat A, Good A. Agrobacterium tumefaciens-mediated genetic transformation of cereals using immature embryos. In: Thorpe T A, Yeung E C, eds. Plant Embryo Culture. New York: Humana Press, 2011. pp 355–372[18]Tang D, Wu W, Li W, Lu H, Worland A J. Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Theor Appl Genet, 2000, 101: 286–291[19]Song D, Chen J, Song F, Zheng Z. A novel rice MAPK gene, OsBIMK2, is involved in disease-resistance responses. Plant Biol, 2006, 8: 587–596 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|