欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2115-2122.doi: 10.3724/SP.J.1006.2013.02115

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米D亚族bZIP转录因子基因的数据库挖掘、分析、克隆与表达

杨艳歌1,2,吕维涛2,孙冬梅1,*,凌毅3,*,邓馨2,*   

  1. 1黑龙江八一农垦大学生命科学技术学院,黑龙江大庆163319;2中国科学院植物研究所资源植物研发重点实验室,北京100093;3中国农业大学生物学院,北京100193
  • 收稿日期:2013-04-22 修回日期:2013-06-09 出版日期:2013-12-12 网络出版日期:2013-09-29
  • 通讯作者: 孙冬梅,E-mail: sdmlzw@126.com,Tel:13089069957;凌毅,E-mail: lingyi01@cau.edu.cn,Tel:010-62734385;邓馨,E-mail: deng@ibcas.ac.cn,Tel:010-62836261
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2011ZX08009-002)和黑龙江省研究生创新科研项目资金一般项目(YJSCX2012-261HLJ)资助。

Database Mining, Bioinformatics, Cloning and Expression Analyses of D Subfamily bZIP Genes in Maize

YANG Yan-Ge1,2,LÜ Wei-Tao2,SUN Dong-Mei1,*,LING Yi3,*,DENG Xin2,*   

  1. 1 College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; 2 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 3College of Life Science, China Agricultural University, Beijing 100193, China
  • Received:2013-04-22 Revised:2013-06-09 Published:2013-12-12 Published online:2013-09-29
  • Contact: 孙冬梅,E-mail: sdmlzw@126.com,Tel:13089069957;凌毅,E-mail: lingyi01@cau.edu.cn,Tel:010-62734385;邓馨,E-mail: deng@ibcas.ac.cn,Tel:010-62836261

摘要:

碱性亮氨酸拉链(basic leucine zipper, bZIP)是真核生物特有的转录因子家族,在高等植物基因表达与调控中起重要作用。本文通过对玉米基因组数据库中收录的全长cDNA序列全基因组范围的bZIP分析,发现其中25个序列编码D亚族bZIP转录因子。针对这些序列进行生物信息学分析、染色体分布和直系同源组的分类分析,发现部分序列可能是由同一基因座编码,但不同方式剪切形成的。对部分基因克隆和测序发现了更多的剪切形式。定量检测其中3个基因在ABA和干旱胁迫条件下的表达发现,其中1个受ABA诱导,2个受ABA抑制,但均不受干旱胁迫影响。表明玉米中D亚族基因可能参与ABA响应

关键词: 玉米, bZIP转录因子, D亚族, 数据库挖掘, 基因表达

Abstract:

Basic leucine zipper (bZIP) is unique transcription factor family among eukaryotes, playing important roles in gene expression and regulation in higher plants. Here we reported the finding of 25 full length cDNA sequences encoding D subfamily of bZIP factors in maize from a database mining on whole genome level. The analysis of bioinformatics, chromosome distribution and classification of Possible Groups of Orthologous (PoGO) suggested the existence of diverse alternative splicing in some of these genes, which was supported by the sequencing results of the cloned cDNAs. The expression pattern of three representative genes in response to ABA and drought stress were examined by quantitative RT-PCR, and the results revealed different regulations of ABA on the expression of these genes. Our results suggest that D subfamily of bZIP genes in maize might involve in ABA signal pathway.

Key words: Maize, bZIP transcription factor, D subfamily, Database mining, Gene expression

[1]Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470–3488



[2]Siberil Y, Doireau P, Gantet P. Plant bZIP G-box binding factors. Modular structure and activation mechanisms. Eur J Biochem, 2001, 268: 5655–5666



[3]Mehrotra R, Kiran K, Chaturvedi CP, Ansari SA, Lodhi N, Sawant S, Tuli R. Effect of copy number and spacing of the ACGT and GT cis elements on transient expression of minimal promoter in plants. J Genet, 2005, 84: 183–187



[4]Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, Grp bR. bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106–111



[5]Correa L G, Riano-Pachon D M, Schrago C G, dos Santos R V, Mueller-Roeber B, Vincentz M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PloS ONE, 2008, 3: e2944



[6]Chuang C F, Running M P, Williams R W, Meyerowitz E M. The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev, 1999, 13: 334–344



[7]Walsh J, Freeling M. The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. Plant J, 1999, 19: 489–495



[8]Foley R C, Singh K B. TGA5 acts as a positive and TGA4 acts as a negative regulator of ocs element activity in Arabidopsis roots in response to defence signals. Febs Lett, 2004, 563: 141–145



[9]Zhou J M, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig D F. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR–1 gene required for induction by salicylic acid. Mol Plant Microbe Interact, 2000, 13: 191–202



[10]Johnson C, Boden E, Arias J. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell, 2003, 15: 1846–1858



[11]Gatz C. From pioneers to team players. TGA transcription factors provide a molecular link between different stress pathways. Mol Plant Microbe Interact, 2013, 26: 151–159



[12]Xiang C, Miao Z, Lam E. DNA-binding properties, genomic organization and expression pattern of TGA6, a new member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Mol Biol, 1997, 34: 403–415



[13]Foley R C, Grossman C, Ellis J G, Llewellyn D J, Dennis E S, Peacock W J, Singh K B. Isolation of a maize bZIP protein subfamily: candidates for the ocs-element transcription factor. Plant J, 1993, 3: 669–679



[14]Schindler U, Menkens A E, Beckmann H, Ecker J R, Cashmore A R. Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J, 1992, 11: 1261–1273



[15]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 2001, 25: 402–408



[16]Chenna R, Sugawara H, Koike T, Lopez R, Gibson T J, Higgins D G, Thompson J D. Multiple sequence alignment with the clustal series of programs. Nucl Acids Res, 2003, 31: 3497–3500



[17]Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform, 2004, 5: 150–163



[18]Bentsink L, Jowett J, Hanhart C J, Koornneef M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103: 17042–17047



[19]Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J, 2010, 61: 672–685



[20]Graeber K, Linkies A, Muller K, Wunchova A, Rott A, Leubner-Metzger G. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Mol Biol, 2010, 73: 67–87



[21]Chiang G C, Barua D, Dittmar E, Kramer E M, de Casas R R, Donohue K. Pleiotropy in the wild: the dormancy gene DOG1 exerts cascading control on life cycles. Evolution, 2013, 67: 883–893



[22]Li X(李昕), Yang S(杨爽), Peng L-X(彭立新), Wang W(王文). The origin and evolution of new genes. Chin Sci Bull (科学通报), 2004, 49(13): 1219–1225 (in Chinese)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!