欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2145-2153.doi: 10.3724/SP.J.1006.2013.02145

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆谷氨酰胺合成酶基因的分类及根瘤特异表达GmGS1β2基因功能的初步分析

王晓波1,滕婉2,何雪2,童依平2,*   

  1. 1 安徽农业大学农学院,安徽合肥230036; 2 中国科学院遗传与发育生物学研究所 / 植物细胞与染色体工程国家重点实验室,北京100101
  • 收稿日期:2013-04-07 修回日期:2013-07-25 出版日期:2013-12-12 网络出版日期:2013-10-01
  • 通讯作者: 童依平, E-mail: yptong@genetics.cas.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31201226), 植物细胞与染色体工程国家重点实验室开放课题(PCCE-KF-2011-05)和安徽省自然科学基金(1308085QC49)。

Classification of Glutamine Synthetase Gene and Preliminary Functional Analysis of the Nodule-Predominantly Expressed Gene GmGS1β2 in Soybean

WANG Xiao-Bo1,TENG Wan2,HE Xue2,TONG Yi-Ping2,*   

  1. 1 School of Agronomy, Anhui Agricultural university, Hefei 230036, China; 2 State Key Laboratory of Plant Cell and Chromosome Engineering / Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
  • Received:2013-04-07 Revised:2013-07-25 Published:2013-12-12 Published online:2013-10-01

摘要:

Phytozome数据库中获得包括大豆在内的12种植物的谷氨酰胺合成酶(glutamine synthetase, GS)氨基酸序列,利用MEGA5.10软件进行多序列比对、构建进化树。进化分析表明,植物GS可以分成胞质型(GS1)和质体型(GS2)两大类,GS1可进一步分成分5个亚类,包括双子叶植物为主的IIIIII亚类、低等植物类(IV)和单子叶植物类(V)。这5亚类中,第II类是豆科植物特有的一类,大豆的4GS1 (GmGS1β1/2GmGS1γ1/2)属于该亚类;利用qPCR在大豆盛花期分析GS1基因的组织表达特异性,结果表明不同类型GmGS1基因在表达部位和表达丰度上存在较大差异,而同一类基因之间具有相似的表达规律;4个豆科植物特有的GS1基因在大豆根瘤中都有较高的表达量,其中位于大豆第18染色体上的GmGS1β2基因表达丰度最高;利用原核表达系统体外表达GmGS1β2蛋白,诱导出分子量大小与理论预测值一致的目标蛋白,酶活性分析表明GmGS1β2可以与底物发生催化反应,具有谷氨酰胺合成酶活性,推测该基因在大豆根瘤氮素同化代谢中具有重要作用。

关键词: 大豆, GmGS1基因, 组织特异表达, GS酶活性

Abstract:

The purpose of this study was to analyze the evolution, classification and tissue expression specificity of soybean cytosolic glutamine synthetase genes. Glutamine synthetase (GS) proteins from 12 species were downloaded from phytozome database, and used for phylogenetic analysis. The GSs were divided into two groups, cytosolic glutamine synthetase (GS1) and plastidic glutamine synthetase (GS2) based on the maximum likelihood of MEGA 5.10 software. The GS1 group was further divided into five subgroups, including three dicotyledons subgroups (I, II, and III), lower plants subgroup (IV) and monocotyledons subgroup (V). All GSs in subgroup II were mainly derived from leguminous plants including four GmGS1 proteins (GmGS1β1/2 and GmGS1γ1/2) in soybean. Real-time RT-PCR analysis of GmGS1 genes indicated that soybean GS duplicated genes had the same tissue specificity of expression, while the four subgroup II GmGS1 genes presented higher expression level in soybean nodules than in other tissues. Among the six GmGS1 genes, GmGS1β2 located on chromosome 18 had the highest expression level and predominantly expressed in developing nodules. GmGS1β2 was then ligated into pGEX4T-1 vector and transformed into BL21 (DE3) for prokaryotic expression. GmGS1β2 recombinant protein was purified by 4B-Beads and tested for GS activity by spectrophotometer. Prokaryotic expression result showed that the molecular weight of GmGS1β2 was 39 kD, which is consistent with previous theoretical prediction. Catalyzing reaction showed that the recombinant protein had glutamine synthetase activity, which means GmGS1β2 encoded a functional GmGS1β2 glutamine synthetase. These results provide useful information for further functional research of GS1 proteins involved in nitrogen assimilation in soybean nodule.

Key words: Glycine max (L.) Merr, GmGS1 genes, Tissue specific expression, Glutamine synthetase activity

[1]Peterman T K, Goodman H M. The glutamine synthetase gene family of Arabidopsis thaliana: light-regulation and differential expression in leaves, roots and seeds. Mol Gen Genet, 1991, 230: 145–154



[2]Taira M, Valtersson U, Burkhardt B, Ludwig R A. Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell, 2004, 16: 2048–2058



[3]Li R J, Hua W, Lu Y T. Arabidopsis cytosolic glutamine synthetase AtGLN1;1 is a potential substrate of AtCRK3 involved in leaf senescence. Biochem Biophys Res Commun, 2006, 342: 119–126



[4]Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot, 2011, 105: 1141–1157



[5]Edwards J W, Walker E L, Coruzzi G M. Cell-specific expression in transgenic plants reveals nonoverlapping roles for chloroplast and cytosolic glutamine synthetase. Proc Natl Acad Sci USA, 1990, 87: b3459–3463



[6]Bernard S M, Habash D Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol, 2009, 182: 608–620



[7]Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Terce-Laforgue T, Quillere I, Coque M, Gallais A, Gonzalez-Moro M B, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18: 3252–3274



[8]Morey K J, Ortega J L, Sengupta-Gopalan C. Cytosolic glutamine synthetase in soybean is encoded by a multigene family, and the members are regulated in an organ–specific and developmental manner. Plant Physiol, 2002, 128: 182–193



[9]Wang Y-F(王月福), Yu Z-W(于振文), Li S-X(李尚霞), Yu S-L(余松裂). Comparison of nitrate reductase and glutamine synthetase activities in different organs of wheat after flowering. Plant Physi Commun (植物生理学通讯), 2003, 39(3): 209–210 (in Chinese with English abstract)



[10]Habash D Z, Massiah A J, Rong H L, Wallsgrove R M, Leigh R A. The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol, 2001, 138: 83–89



[11]Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol, 2001, 125: 1258–1270



[12]Hirel B, Le Gouis J, Ney B, Gallais A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot, 2007, 58: 2369–2387



[13]Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot, 2004, 55: 295–306



[14]Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot, 2002, 53: 917–925



[15]Obara M, Sato T, Sasaki S, Kashiba K, Nagano A, Nakamura I, Ebitani T, Yano M, Yamaya T. Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theor Appl Genet, 2004, 110: 1–11



[16]Li X P, Zhao X Q, He X, Zhao G Y, Li B, Liu D C, Zhang A M, Zhang X Y, Tong Y P, Li Z S. Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use and yield-related traits in bread wheat. New Phytol, 2011, 189: 449–458



[17]Masalkar P, Wallace I S, Hwang J H, and Roberts M D. Interaction of cytosolic glutamine synthetase of soybean root nodules with the C–terminal domain of the symbiosome membrane nodulin 26 aquaglyceroporin. J Biol Chem, 2010, 285: 23880–23888



[18]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2010, 28: 2731–2739



[19]Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178–183



[20]Ohno S. Evolution by gene duplication. New York: Springer-Verlag, 1970



[21]Hughes A L. The evolution of functionally novel proteins after gene duplication. Proc Biol Sci, 1994, 256, 119–124



[22]Ortega J L, Temple S J, Sengupta–Gopalan C. Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. Plant Physiol, 2001, 126: 109–121



[23]Ortega J L, Moguel–Esponda S, Potenza C, Conklin C F, Quintana A, Sengupta–Gopalan C. The 3' untranslated region of a soybean cytosolic glutamine synthetase (GS1) affects transcript stability and protein accumulation in transgenic alfalfa. Plant J, 2006, 45: 832–846



[24]Ortega J L, Wilson O L, Sengupta–Gopalan C. The 5' untranslated region of the soybean cytosolic glutamine synthetase beta(1) gene contains prokaryotic translation initiation signals and acts as a translational enhancer in plants. Mol Genet Genomics, 2012, 287: 881–893



[25]Miao G H, Hirel B, Marsolier M C, Ridge R W, Verma D P S: Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. Plant Cell, 1991, 3:11–22



[26]Marsolier M C, Debrosses G, Hirel B. Identification of several soybean cytosolic glutamine synthetase transcripts highly or specifically expressed in nodules: expression studies using one of the corresponding genes in transgenic lotus corniculatus. Plant Mol Biol, 1995, 27: 1–15

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!