欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2177-2182.doi: 10.3724/SP.J.1006.2013.02177

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米胁迫诱导表达基因ZmSNAC1的功能分析

卢敏,张登峰,石云素,宋燕春,黎裕*,王天宇*   

  1. 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2013-03-27 修回日期:2013-06-24 出版日期:2013-12-12 网络出版日期:2013-08-12
  • 通讯作者: 黎裕, E-mail: liyu03@caas.cn; 王天宇, E-mail: wangtianyu@263.net
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2011ZX08003-004),国家科技支撑计划项目(2013BAD01B02)和国家自然科学基金项目(U1138304)资助。

Overexpression of a Stress Induced Maize NAC Transcription Factor Gene, ZmSNAC1, Improved Drought and Salt Tolerance in Arabidopsis

LU Min,ZHANG Deng-Feng,SHI Yun-Su,SONG Yan-Chun,LI Yu*,WANG Tian-Yu*   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing 100081, China
  • Received:2013-03-27 Revised:2013-06-24 Published:2013-12-12 Published online:2013-08-12
  • Contact: 黎裕, E-mail: liyu03@caas.cn; 王天宇, E-mail: wangtianyu@263.net

摘要:

NAC转录因子是具有多种生物功能的植物特异转录调控因子,在植物生长发育、器官建成、激素调节和抵抗逆境等方面发挥着重要的作用。我们之前分离得到1个受干旱、盐、冷等非生物逆境胁迫和植物激素ABA诱导显著上调表达的玉米NAC家族成员ZmSNAC1,过表达转基因株系在苗期的耐脱水能力较野生型株系明显提高。在此基础上,本研究进一步对ZmSNAC1过表达转基因株系在植株生殖生长发育时期的抗旱性和耐盐性进行功能鉴定。结果表明,在干旱胁迫条件下,野生型株系相比转基因株系较存活率提高50%~52%,相对电导率降低17%~21%,叶绿素含量提高36%~47%,脯氨酸含量提高了17%~23%;在300mmol L-1 NaCl胁迫条件下,转基因株系的存活率提高36~40%ZmSNAC1可能作为一个正向调控因子在逆境胁迫信号转导过程中发挥重要作用。

关键词: ZmSNAC1, 逆境胁迫抗逆, 玉米

Abstract:

NAC proteins, which are important regulatory factors, have received much attention for their biological functions in abiotic stress adaptations and tolerances, as well as in the plant metabolic processes under biotic stress and in development. Previously, we isolated a stress-induced NAC gene, designed as ZmSNAC1, from the maize inbred line “CN165” and found that overexpression of ZmSNAC1 led to enhanced tolerance to dehydration at seedling stage. In this study, the functions of ZmSNAC1 were further characterized under drought and salt stresses at reproductive stage. The results indicate that overexpression of ZmSNAC1 inArabidopsis conferred enhanced drought and salt tolerances, showing an improved survival percentage and physiological changes, such as the reduced electrolyte leakage and higher chlorophyll content in transgenic plants. These results indicated that ZmSNAC1 may function as a positive regulator in multiple pathways of signal transduction under abiotic stresses and have potential utilization in transgenic breeding for improving stress tolerance in crops.

Key words: ZmSNAC1, Abiotic stress, Stress tolerance, Maize

[1]Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 2012, 1819: 97–103



[2]Qin F, Shinozaki K, Yamaguchi-Shinozaki K. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol, 2011, 52: 1569–1582



[3]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2006, 58: 221–227



[4]Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 35: 12987–12992



[5]Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Do Choi Y, Kim M, Reuzeau C, Kim J K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol, 2010, 153: 185–197



[6]Mao X G, Zhang H Y, Qian X Y, Li A, Zhao G Y, Jing R L. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot, 2012, 63: 2933–2946



[7]Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85: 159–170



[8]Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841–857



[9]Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10: 239–247



[10]Nuruzzaman M, Manimekalai R, Sharoni A M, Satoh K, Kondoh H, Ooka H, Kikuchi S. Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010, 465: 30–44



[11]Puranik S, Sahu P P, Srivastava P S, Prasad M. NAC proteins: regulation and role in stress tolerance. Trends Plant Sci, 2012, 17: 369–381



[12]Lee S, Seo P J, Lee H J, Park C M. A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J, 2012, 70: 831–844



[13]Zheng X N, Chen B, Lu G J, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun, 2009, 379: 985–989



[14]Song S Y, Chen Y, Chen J, Dai X Y, Zhang W H. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta, 2011, 234: 331–345



[15]Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H F, Lei G, Tian A G, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J, 2011, 68: 302–313



[16]Lu M, Ying S, Zhang D F, Shi Y S, Song Y C, Wang T Y, Li Y. A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep, 2012, 31: 1701–1711



[17]Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205–207



[18]Melkonian J, Yu L X, Setter T L. Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance. J Exp Bot, 2004, 55: 1751–1760



[19]Nakashima K, Tran L S, Nguyen D V, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51: 617–630



[20]Delessert C, Kazan K, Wilson I W, Van Der Straeten D, Manners J, Dennisand E S, Dolferus R. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J, 2005, 43: 745–757

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!