作物学报 ›› 2014, Vol. 40 ›› Issue (04): 622-628.doi: 10.3724/SP.J.1006.2014.00622
李慧聪,李国良,郭秀林*
LI Hui-Cong,LI Guo-Liang,GUO Xiu-Lin*
摘要:
在前期对玉米热激转录因子基因ZmHSF-Like克隆、表达特性和亚细胞定位分析的基础上,对基因响应不同逆境胁迫的信号途径进行了研究。结果显示,H2O2处理能显著上调ZmHSF-Like基因的表达,42℃热激上调ZmHSF-Like基因的表达依赖于H2O2的存在,ABA上调基因表达部分依赖于H2O2的存在,而PEG-6000诱导基因表达不依赖于H2O2;外源Ca2+处理也能上调ZmHSF-Like基因表达,而螯合胞外钙离子并阻断其内流并不能降低上述逆境胁迫诱导的ZmHSF-Like基因的表达水平。表明ZmHSF-Like基因通过H2O2信号途径实现对热激和ABA胁迫的响应。在H2O2处理过程中,热激蛋白基因HSP704的表达与ZmHSF-Like基因的表达同步,可能是该途径中ZmHSF-Like结合的下游热激蛋白。单独钙离子诱导处理,热激蛋白基因HSP701、HSP702和HSPeu701的表达均与ZmHSF-Like基因的表达同步,可能是ZmHSF-Like基因响应Ca2+反应的下游结合蛋白。ZmHSF-Like通过与下游不同热激蛋白的结合实现对不同逆境胁迫的响应。
[1]Nover L, Scharf K D, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley W B. The HSF world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones, 1996, 1: 215–223 [2]Schöffl F, Prändl R, Reindl A. Regulation of the heat-shock response. Plant Physiol, 1998, 117: 1135–1141[3]Nover L, Bharti K, Döring P, Mishra S K, Ganguli A, Scharf K D. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need. Cell Stress Chaperones, 2001, 6: 177–189[4]Lee J H, Hübel A, Schöffl F. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J, 1995, 8: 603–612[5]Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J, 2006, 48: 535–547[6]Charng Y Y, Liu H C, Liu N Y, Chi W T, Wang C N, Chang S H, Wang T T. A heat-induced transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol, 2007, 143: 251–262[7]Mishra S K, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf K D. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev, 2002, 16: 1555–1567[8]Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta, 2008, 227: 957–967[9]Scharf K D, Rose S, Zott W, Schöffl F, Nover L. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J, 1990, 9: 4495–4501[10]Hübel A, Schöffl F. Arabidopsis heat shock factor: isolation and characterization of the gene and the recombinant protein. Plant Mol Biol, 1994, 26: 353–362[11]Czarnecka-Verner E, Yuan C X, For P C. Isolation and characterization of six heat shock transcription factor cDNA clones from soybean. Plant Mol Biol, 1995, 29: 37–51[12]Aranda M A, Escaler M, Thomas C L, Maule A J. A heat shock transcription factor in pea is differentially controlled by heat and virus replication. Plant J, 1999, 20: 153–161[13]Almoguera C, Rojas A, Díaz-Martín J, Prieto-Dapena P, Carranco R, Jordano J. A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. Biol Chem, 2002, 277: 43866–43872[14]Yamanouchi U, Yano M, Lin H X, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530–7535[15]Shim D, Hwang J U, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell, 2009, 21: 4031–4043[16]Lin Y X, Jiang H Y, Chu Z X, Tang X L, Zhu S W, Cheng B J. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics, 2011, 12: 76–89[17]Gagliardi D, Breton C, Chaboud A, Vergne P, Dumas C. Expression of heat shock factor and heat shock protein 70 genes during maize pollen development. Plant Mol Biol, 1995, 29: 841–856[18]Li H C, Li G L, Liu Z H, Zhang H M, Zhang Y M, Guo X L. Cloning, localization and expression of ZmHSF-Like in Zea mays. J Integr Agric, 2013 (accepted) [19]Zhou R G, Li B, Liu H T, Sun D Y. Progress in the participation of Ca2+-Calmodulin in heat shock signal transduction. Prog Nat Sci, 2009, 19: 1201–1208[20]Li B, Liu H T, Sun D Y, Zhou R G. Ca2+ and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol, 2004, 45: 627–634[21]Dat J F, Foyer C H, Scott I M. Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlings. Plant Physiol, 1998, 118: 1455–1461[22]Schett G, Steiner C W, Groger M, Winkler S, Graninger W, Smolen J, Xu Q B, Steiner G. Activation of Fas inhibits heat induced activation of Hsf1 and upregulation of Hsp70. FASEB J, 1999, 13: 833–842[23]Lee B H, Won S H, Lee H S, Miyaob M, Chung W I, Kimc I J, Joa J. Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene, 2000, 245: 283–290 [24]Davletova S, Rizhsky L, Liang H J. Cytosolic ascorbate peroxidase1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell, 2005, 17: 268–281[25]党姣, 蒋明义, 林凡. ABA上调水稻叶片OsHSF基因的表达. 南京农业大学学报, 2010, 33(1): 11–15Dang J, Jiang M Y, Lin F. ABA up-regulate the expression of OsHSF gene in leaves of rice plants. J Nanjing Agric Univ, 2010, 33(1): 11–15 (in Chinese with English abstract)[26]郭秀林, 李孟军, 关军锋, 崔四平, 李广敏. PEG胁迫下小麦幼苗ABA与Ca2+/CaM的关系. 作物学报, 2002, 28: 537–540 Guo X L, Li M J, Guan J F, Cui S P, Li G M. The relationship between ABA and Ca2+/CaM in winter wheat seedlings under PEG stress. Acta Agron Sin, 2002, 28: 537–540 (in Chinese with English abstract) [27]李孟军, 郭秀林, 关军锋, 崔四平, 马春红, 李广敏. 渗透胁迫下外源ABA对小麦幼苗根和叶中ABA及CaM含量的影响. 植物生理学通讯, 2002, 38: 20–21Li M J, Guo X L, Guan J F, Cui S P, Ma C H, Li G M. Effects of ABA on endogenous ABA and CaM contents of leave and roots of wheat seedlings under osmotic stress. Plant Physiol Commun, 2002, 38: 20–21[28]李春光, 陈其军, 高新起, 祁碧菽, 陈乃芝, 许守明, 陈珈, 王学臣. 拟南芥热激转录因子AtHsfA2调节胁迫反应基因的表达并提高热和氧化胁迫耐性. 中国科学 C辑 生命科学, 2005, 35: 398-407Li C G, Chen Q J, Gao X Q, Qi B S, Cheng N Z, Xu S M, Chen J, Wang X C. Heat shock transcription factor AtHsfA2 regulating genes expression related to stresses and increase endurance to heat and oxidation stress in Arabidopsis. Sci China Ser.C Life Sci, 2005, 35: 398–407 (in Chinese)[29]Liu Z H, Ma Z Y, Liu B H, Guo X L. Changes of cytosolic Ca2+ fluorescence intensity and plasma membrane calcium channels of maize root tip cells under osmotic stress. Plant Physiol Biochem, 2010, 48: 860–865 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[12] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[13] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[14] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[15] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
|