作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1443-1451.doi: 10.3724/SP.J.1006.2014.01443
胡凝1,吕川根2,*,姚克敏1,张晓翠3
HU Ning1,L? Chuan-Gen2,*,YAO Ke-Min1,ZHANG Xiao-Cui3
摘要:
快速、可靠、精确地评估植被冠层结构参数在大气-植被相互作用的研究中起着举足轻重的作用。为探明鱼眼影像在水稻冠层结构研究中的应用前景, 本研究选择3种不同冠层结构的水稻品种作为研究对象, 利用带有鱼眼镜头的数码相机在冠层的8个不同高度分别拍摄冠层影像, 通过对影像的预处理提取冠层间隙度参数, 根据冠层内辐射环境与冠层结构之间的定量化关系, 利用Beer-Lambert定律反演水稻冠层的叶面积指数(leaf area index, LAI)和平均叶倾角(mean leaf angle, MLA)。研究结果表明, 鱼眼影像反演的LAI均方根误差(root mean square error, RMSE)为1.2~1.5, 相对误差(relative error, RE)为18.6%~22.5%, 仅比人工测定结果低估7.6%~13.1%, 优于Sunscan的测定结果。其次, 反演的MLA与人工测定结果之间有较好的一致性, 相关系数为0.9205**, RMSE为11.7°, RE为16.1%。研究结果表明, 鱼眼影像反演水稻冠层结构是可行的方法。
[1]Rich P M. Characterizing plant canopies with hemispherical photography. Remote Sens, 1990, 5: 13–19[2]Chen J M, Black T A, Adams R S. Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agric For Meteorol, 1991, 56: 129–143[3]Fournier R A, Landry R, August N M, Fedosejevs G, Gauthier R P. Modelling light obstruction in three conifer forests using hemispherical photography and fine tree architecture. Agric For Meteorol, 1996, 82: 47–72[4]Frazer G W, Fournier R A, Trofymowc J A, Hall R J. A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric For Meteorol, 2001, 109: 249–263[5]Evans G C, Coombe D E. Hemispherical and woodland canopy photography and the light climate. J Ecol, 1959, 47: 103–113[6]Macfarlane C. Classification method of mixed pixels does not affect canopy metrics from digital images of forest over storey. Agric For Meteorol, 2011, 151: 833–840[7]Liu J, Pattey E. Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agric For Meteorol, 2010, 150: 1485–1490[8]Macfarlane C, Grigg A, Evangelista C. Estimating forest leaf area using cover and full frame fisheye photography: Thinking inside the circle. Agric For Meteorol, 2007, 146: 1–12[9]Chianucci F, Cutini A. Estimation of canopy properties in deciduous forests with digital hemispherical and cover photography. Agric For Meteorol, 2013, 168: 130-139[10]赵传燕, 沈卫华, 彭焕华. 祁连山区青海云杉林冠层叶面积指数的反演方法. 植物生态学报, 2009, 33: 860–869Zhao C Y, Shen W H, Peng H H. Methods for determining canopy leaf area index of Picea crassifolia forest in Qilian Mountains, China. Chin J Plant Ecol, 2009, 33: 860–869 (in Chinese with English abstract)[11]马泽清, 刘琪碌, 曾慧卿, 李轩然, 陈永瑞, 林耀明, 张时煌, 杨风亭, 汪宏清. 南方人工林叶面积指数的摄影测量. 生态学报, 2008, 28: 1971–1980Ma Z Q, Liu Q L, Zeng H Q, Li X R, Chen Y R, Lin Y M, Zhang S H, Yang F T, Wang H Q. Estimation of leaf area index of planted forests in subtropical China by photogrammetry. Acta Ecol Sin, 2008, 28: 1971–1980 (in Chinese with English abstract)[12]Demarez V, Duthoit S, Baret F, Weiss M, Dedieu G. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agric For Meteorol, 2008, 148: 644–655[13]Zhou L, Pan G, Shi Z. Methodology Comparison for Effective LAI Retrieving Based on Digital Hemispherical Photograph in Rice Canopy. In: Li D, Liu Y, Chen Y, eds. Computer and Computing Technologies in Agriculture IV. Springer Berlin Heidelberg, 2011. pp 71–82[14]肖潇, 杨国光, 白剑. 基于球面透视投影约束的全景环形透镜畸变校正. 光学学报, 2008, 28: 675–680Xiao X, Yang G G, Bai J. Panoramic-annular-lens distortion correction based on spherical perspective projection constraint. Acta Optica Sin, 2008, 28: 675–680 (in Chinese with English abstract)[15]Norman J M, Campbell G S. Canopy structure. In: Pearcy R W, Ehleringer J R, Mooney H A. Plant Physiological Ecology. Field Methods and Instrumentation, London: Chapman and Hall, 1989. pp 301–325[16]Welles J M, Norman J M. Instrument for indirect measurement of canopy architecture. Agron J, 1991, 83: 818–825[17]Nobis M, Hunziker U. Automatic thresholding for hemispherical canopy-photographs based on edge diction. Agric For Meteorol, 2005, 128: 243–250[18]Leblanc S G, Chen J M, Fernandes R, Deering D W, Conley A. Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric For Meteorol, 2005, 129: 187–207[19]Miller J B. A formula for average foliage density. Aust J Bot, 1967, 15: 141–144[20]Lang A R G. Leaf area and average leaf angle from transmission of direct sunlight. Aust J Bot, 1986, 34: 349–355[21]潘永地, 姚克敏, 胡雪琼. 杂交水稻株型因素的相关性及其规律. 南京气象学院学报, 2003, 26: 538–544 Pan Y D, Yao K M, Hu X Q. Correlation of plant-type factors of hybrid rice and its regularity. J Nanjing Inst Meteor, 2003, 26: 538–544 (in Chinese with English abstract)[22]丁圣彦, 卢训令, 李昊民. 天童国家森林公园常绿阔叶林不同演替阶段群落光环境特征比较. 生态学报, 2005, 25: 2862–2867 Ding S Y, Lu X L, Li H M. A comparison of light environmental characteristics for evergreen broad-leaved forest communities from different successional stages in Tiantong National Forest Park. Acta Ecol Sin, 2005, 25: 2862–2867 (in Chinese with English abstract)[23]罗俊, 张华, 邓祖湖, 徐良年, 高三基, 陈如凯, 陈由强. 甘蔗不同叶位叶片形态与冠层特征的关系. 应用与环境生物学报, 2005, 11: 28–31 Luo J, Zhang H, Deng Z H, Xu L N, Gao S J, Chen R K, Chen Y Q. Relationship between canopy characters and leaf morphology at different position. Chin J Appl Environ Biol, 2005, 11: 28–31 (in Chinese with English abstract)[24]姚克敏, 胡凝, 吕川根, 黄凤新. 鱼眼影像技术反演植被冠层结构参数的研究进展. 南京气象学院学报, 2008, 31: 139–144Yao K M, Hu N, Lü C G, Huang F X. Advances in canopy structure parameters retrieval using hemispherical photography. J Nanjing Inst Meteorol, 2008, 31: 139–144 (in Chinese with English abstract)[25]Zhang Y, Chen J M, Miller J R. Determining exposure of digital hemispherical photographs for leaf area index estimation. Agric For Meteorol, 2005, 133: 166–181[26]Englund S R, O′Brien J J, Clark D B. Evaluation of digital and film hemispherical photography and spherical densitometry for measuring forest light environments. Can J For Res, 2000, 30: 1999–2005[27]Macfarlane C, Coote M, White D A. Photographic exposure affects indirect estimation of leaf area in plantations of Eucalyptus globulus labill. Agric For Meteorol, 2000, 100: 155–168 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|