欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1521-1530.doi: 10.3724/SP.J.1006.2014.01521

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻黑条矮缩病抗性评价方法及抗性资源筛选

王宝祥1,胡金龙2,孙志广2,宋兆强2,卢百关1,周振玲1,樊继伟1,秦德荣2,刘裕强2,江玲2,徐大勇1,*,万建民2,3,*   

  1. 1 江苏徐淮地区连云港农业科学研究所, 江苏连云港222006; 2 南京农业大学 / 作物遗传与种质创新国家重点实验室, 江苏南京210095; 3 中国农业科学院作物科学研究所, 北京100081
  • 收稿日期:2014-02-19 修回日期:2014-06-16 出版日期:2014-09-12 网络出版日期:2014-07-10
  • 通讯作者: 万建民, E-mail: wanjm@njau.edu.cn, Tel: 025-84396516; 徐大勇, E-mail: xudayong3030@sina.com, Tel: 0518-85589316
  • 基金资助:

    本研究由国家科技支撑计划项目(2013BAD01B02-16),江苏省自然科学基金项目(BK2011403),江苏省科技支撑计划项目(BE2013301),国家现代农业产业技术体系建设专项,江苏省农业科技自主创新资金(CX[12]5112)和江苏省农业三项工程项目(sx[2011]003)资助。

An Evaluation System for Rice Black-Streaked Dwarf Virus Disease and Screening for Resistant Rice Germplasm

WANG Bao-Xiang1,HU Jin-Long2,SUN Zhi-Guang2,SONG Zhao-Qiang2,LU Bai-Guan1,ZHOU Zhen-Ling1,FAN Ji-Wei1,QIN De-Rong1,LIU Yu-Qiang2,JIANG Ling2,XU Da-Yong1,*,WAN Jian-Min2,3,*   

  1. 1 Institute of Lianyungang Agricultural Science of Xuhuai Area, Lianyungang 222006, China; 2 State Key Laboratory of Crop Genetics and Germplasm Enhancement / Nanjing Agricultural University, Nanjing 210095, China; 3 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2014-02-19 Revised:2014-06-16 Published:2014-09-12 Published online:2014-07-10
  • Contact: 万建民, E-mail: wanjm@njau.edu.cn, Tel: 025-84396516; 徐大勇, E-mail: xudayong3030@sina.com, Tel: 0518-85589316

摘要:

水稻黑条矮缩病是水稻主要病毒病害之一。目前由于缺乏规模、高效的黑条矮缩病抗性鉴定体系,制约了抗黑条矮缩病水稻资源的发掘,限制了抗黑条矮缩病的育种进程和基础研究。本研究通过分析水稻黑条矮缩病田间鉴定所需灰飞虱的有效接种密度、带毒率及播期等,提出水稻黑条矮缩病田间鉴定有效接种的灰飞虱密度在800万头 hm-2左右较为合理,而带毒率应不低于5%。并进一步对现有黑条矮缩病人工接种鉴定的循回期、接种虫量、接种时间及虫龄等进行了优化。利用上述鉴定体系,2010年对来源于20个国家的共1240份水稻种质进行黑条矮缩病田间鉴定,初步获得发病率低于10%的品种34个;20112012连续两年对该34个品种进行多年多点重复抗性鉴定,发现来自东南亚地区的3个品种Kanyakumari 29Madurai 25Vietnam 160连续3年发病率均低于10%,表现较高的黑条矮缩病的抗性。进一步分期播种鉴定的结果表明,Kanyakumari293个播期、3个鉴定点的发病率均低于12%,而Madurai 25Vietnam 160发病率均低于9%。此外,人工接种条件下Kanyakumari 29Madurai 25Vietnam 160的发病率均低于9%。因此,多年多点田间鉴定和人工室内接种鉴定的结果均表明,Kanyakumari 29Madurai 25Vietnam 160稳定、高抗黑条矮缩病。综上所述,本研究建立的田间鉴定与室内鉴定相结合的黑条矮缩病鉴定体系准确、可靠,可用于黑条矮缩病的大规模鉴定,该体系的建立及高抗黑条矮缩病水稻资源的发掘为水稻抗黑条矮缩病基因的鉴定及育种利用提供了重要的方法和材料基础。

关键词: 水稻, 黑条矮缩病, 抗性鉴定

Abstract:

Rice black-streaked dwarf virus disease (RBSDVD) is one of the most serious viral diseases. The absence of efficient resistance evaluation system for RBSDVD restricts the excavation of the resistance resource, thereby the resistance breeding and basal researches are limited. Here, we proposed that the appropriate density of small brown planthopper (SBPH) should be 8 million ha-1 and the rate of RBSDV-carrying SBPH should be over 5% for RBSDVD evaluation in field condition. Further, we optimized the artificial inoculation evaluation system including circulative period, number of SBPH per plant, infestation time and age of SBPH. We evaluated 1240 varieties from 21 countries for RBSDV resistance by natural inoculation in 2010, 34 cultivars had the disease incidence less than 10%. The 34 cultivars were further evaluated by natural inoculation in three different locations in 2011 and 2012, respectively. Finally, only three varieties, Kanyakumari 29, Madurai 25, and Vietnam 160, which all came from Southeast Asia, had the consistent disease incidence less than 10% in different locations and years. To verify the resistance of the three varieties against RBSDVD, we carried out the interval sowing inoculation experiment in the three different locations in 2012. In the interval sowing experiment, the disease incidence of Kanyakumari 29 was less than 12%, whereas Madurai 25 and Vietnam 160 less than 9%. In addition, in the artificial field inoculation and artificial room inoculation experiments, the disease incidence of the three varieties was less than 9%. The above natural and artificial inoculation experiments showed that Kanyakumari 29, Madurai 25, and Vietnam 160 performed stable and high RBSDVD resistance. Taken together, the RBSDVD evaluation system combining field with artificial infestation identifications used in this study is accurate and reliable. This system could be used to widely screen RBSDVD resistance resources. The construction of RBSDVD evaluation system and the RBSDVD resistance resources identified in this study will provide the useful tools and materials for the identification of RBSDVD resistance gene(s) and development of RBSDVD resistance varieties.

Key words: Rice (Oryza sativa L.), Rice black-streaked dwarf virus, Resistance identification

[1]Milne R G, Lovisolo O. Maize rough dwarf and related viruses. Adv Virus Res, 1977, 21: 267–341



[2]Azuhata F, Uyeda I, Kimura I, Shikata E. Close similarity between genome structures of rice black-streaked dwarf and maize rough dwarf viruses. J Gen Virol, 1993, 74: 1227–1232



[3]李德葆, 王拱辰, 盛方镜. 浙江省水稻病毒病的发生规律和防治. 植物病理学报, 1979, 9(2): 73–87



Li D B, Wang G C, Sheng F J. Epidemiological study on rice virus disease and their control in Zhenjiang Province. Acta Phytopathol Sin, 1979, 9(2): 73–87 (in Chinese with English abstract)



[4]Heng M Z, Yang J, Chen J P, Zhang H M, Yang J, Chen J P, Adams M J. A black-streaked dwarf disease on rice in China is caused by a novel fiji virus. Arch Virol, 2008, 153: 1893–1898



[5]Zhang H M, Chen J P, Lei J L, Adams M J. Sequence analysis shows that a dwarfing disease on rice, wheat and maize in China is caused by rice black-steaked dwarf virus. Eur J Plant Pathol, 2001, 107: 563–567



[6]Wang H D, Chen J P, Wang A G, Jiang X H, Adams M J. Studies on the epidemiology and yield losses from rice black-streaked dwarf disease in a recent epidemic in Zhejiang Province, China. Plant Pathol, 2009, 58: 815–825



[7]周彤, 王英, 吴丽娟, 范永坚, 周益军. 水稻品种抗黑条矮缩病人工接种鉴定方法. 植物保护学报, 2011, 38: 301–305



Zhou T, Wang Y, Wu L J, Fan Y J, Zhou Y J. Method of artificial inoculation identification of rice cultivar resistance to rice black-streaked dwarf. Acta Phytophyl Sin, 2011, 38: 301–305 (in Chinese with English abstract)



[8]王宝祥, 江玲, 陈亮明, 卢百关, 王琦, 黎光泉, 樊继伟, 程遐年, 翟虎渠, 徐大勇, 万建民. 水稻黑条矮缩病抗性资源的筛选和抗性QTL的定位. 作物学报, 2010, 36: 1258–1264



Wang B X, Jiang L, Chen L M, Lu B G, Wang Q, Le Q T, Fan J W, Cheng X N, Zhai H Q, Xu D Y, Wan J M. The screening of the rice resources against rice black-streaked dwarf virus and mapping of resistant QTL. Acta Agron Sin, 2010, 36: 1258–1264 (in Chinese with English abstract)



[9]潘存红, 李爱宏, 陈宗祥, 吴林波, 戴正元, 张洪熙, 黄年生, 陈夕军, 张亚芳, 左示敏, 潘学彪. 水稻黑条矮缩病抗性QTL分析. 作物学报, 2009, 35: 2213–2217



Pan C H, Li A H, Chen Z X, Wu L B, Dai Z Y, Zhang H X, Huang N S, Chen X J, Zhang Y F, Zuo S M, Pan X B. Detection of QTL for resistance to rice black-streaked dwarf viral disease. Acta Agron Sin, 2009, 35: 2213–2217 (in Chinese with English abstract)



[10]Li A H, Pan C H, Wu L B, Dai Z Y, Zuo S M, Xiao N, Yu L, Li Y H, Zhang X X, Xue W X, Zhang H X, Pan X B. Identification and fine mapping of qRBSDV-6MH, a major QTL for resistance to rice black-streaked dwarf virus disease. Mol Breed, 2013, 32: 1–13



[11]王英. 水稻对黑条矮缩病的抗性遗传分析及基因定位. 南京农业大学硕士学位论文, 江苏南京, 2011



Wang Y. Genetic Analysis and Molecular Mapping of QTL for Rice Black-Streaked Disease Resistance in Rice. MS Thesis of Nanjing Agricultural University, Jiangsu, China, 2011 (in Chinese with English abstract)



[12]周彤, 杜琳琳, 范永坚, 周益军. 水稻黑条矮缩病毒RT-LAMP快速检测方法的建立. 中国农业科学, 2012, 45: 1285–1292



Zhou T, Du L L, Fan Y J, Zhou Y J. Development of a RT-LAMP assay for rapid detection of rice black-streaked dwarf virus. Sci Agric Sin, 2012, 45: 1285–1292 (in Chinese with English abstract)



[13]周彤, 王磊, 程兆榜, 范永坚, 周益军. 主栽品种镇稻88对水稻条纹叶枯病的抗性特征及其遗传研究. 中国农业科学, 2009, 42: 103–109



Zhou T, Wang L, Cheng Z B, Fan Y J, Zhou Y J. Mechanism and inheritance of resistance to rice stripe disease in the japonica rice cultivar Zhendao 88. Sci Agric Sin, 2009, 42: 103–109 (in Chinese with English abstract)



[14]孙黛珍, 江 玲, 张迎信, 程遐年, 王春明, 翟虎渠, 万建民. 8个水稻品种的条纹叶枯病抗性特征. 中国水稻科学, 2006, 20: 219–222



Sun D Z, Jiang L, Zhang Y X, Cheng X N, Wang C M, Zhai H Q, Wan J M. Resistance to rice stripe in eight rice varieties. Chin J Ric Sci, 2006, 20: 219–222 (in Chinese with English abstract)



[15]Hibino H. Biology and epidemiology of rice viruses. Annu Rev Phytopathol, 1996, 34: 249–274



[16]Yamaguchi T, Yasuo S, Ishi M. Studies on rice stripe disease: III. Study on varietal resistance to stripe disease of rice. Vent Agric Exp Station, 1965, 8: 109–160



[17]Washio O, Ezuka A, Toriyama K, Sakurai Y. Studies on the breeding of rice varieties resistant to stripe disease: II. Genetic study on resistance to stripe disease in Japanese upland rice. Jpn J Breed, 1968, 18: 96–101



[18]Washio O, Ezuka A, Toriyama K, Sakurai Y. Studies on the breeding of rice varieties resistant to stripe disease: III. Genetic studies on resistance to stripe disease in foreign varieties. Jpn J Breed, 1968, 18: 167–172



[19]Washio O, Ezuka A, Toriyama K, Sakurai Y. Testing method for genetics and breeding for resistance to rice stripe disease. Bull Chugoku Agric Exp Station Ser A, 1968, 16: 39–197



[20]Liu Y, Su C, Jiang L, He J, Wu H, Peng C, Wan J. The distribution and identification of brown planthopper resistance genes in rice. Hereditas, 2009, 146: 67–73



[21]徐建龙, 王汉荣, 林怡滋, 奚永安. 水稻细菌性条斑病和白叶枯病抗性遗传研究. 遗传学报, 1997, 24: 330–335



Xu J L, Wang H R, Lin Y Z, Xi Y A. Study on the inheritance of the resistance of rice to bacterial leaf streak and bacterial leaf blight. Acta Genet Sin, 1997, 24: 330–335 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!