欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (11): 1990-1998.doi: 10.3724/SP.J.1006.2014.01990

• 耕作栽培·生理生化 • 上一篇    下一篇

中国不同年代玉米亲本自交系的灌浆特性与氮素运转

李从锋1,赵明1,刘鹏2,张吉旺2,杨今胜3,董树亭2,*   

  1. 1中国农业科学院作物科学研究所 / 农业部生理生态重点实验室,北京 100081; 2山东农业大学作物生物学国家重点实验室,山东泰安 271018,3山东登海股份有限公司,山东莱州 261448
  • 收稿日期:2014-01-24 修回日期:2014-09-16 出版日期:2014-11-12 网络出版日期:2014-10-01
  • 通讯作者: 董树亭, E-mail: stdong@sdau.edu.cn
  • 基金资助:

    本研究由国家“十二五”科技支撑计划(2011BAD16B14, 2013BAD07B04)和国家现代农业产业技术体系建设专项(NYCYTX-02)资助。

Characteristics of Grain Filling and Nitrogen Translocation of Maize Parent Lines Released in Different Eras in China

LI Cong-Feng1,ZHAO Ming1,LIU Peng2,ZHANG Ji-Wang2,YANG Jin-Sheng3,DONG Shu-Ting2,*   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China, 2 State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China, ,3Denghai Seed Co. Ltd. of Shandong Province, Laizhou 261448, China
  • Received:2014-01-24 Revised:2014-09-16 Published:2014-11-12 Published online:2014-10-01

摘要:

大田试验条件下,选择我国1960s、1980s、2000s三个年代在生产中大面积应用的玉米亲本自交系为试验材料,比较分析了遗传改良过程中玉米骨干自交系灌浆特性及氮素运转的演变特征。结果表明,当代玉米品种及其亲本自交系的产量显著高于其他年代品系(P<0.05),且不同年代品种产量提高与其亲本产量密切相关(P<0.05),亲本自交系产量提高与其穗粒数相关性不显著,而与粒重呈显著正相关(P<0.05)。对粒重变化研究表明,当代亲本自交系的灌浆速率呈先慢后快的趋势,籽粒灌浆的积累起始势(R0)较高,灌浆最大速率出现时间(Tmax)延迟,灌浆速率最大时生长量(Wmax)和最大灌浆速率(Gmax)明显较高。当代亲本自交系具有较高的干物质积累和日增干重,其茎鞘物质输出率和茎鞘物质贡献率均高于1960s自交系,且在高密度条件下优势更为明显。当代亲本自交系具有较高的氮素积累总量(P<0.05),氮素输出率、贡献率的优势不明显(P>0.05),而氮素利用效率及氮收获指数显著高于1960s自交系(P<0.05)。表明遗传改良过程中玉米骨干自交系籽粒产量及氮效率得到同步提高,这与其自身较高的籽粒灌浆能力和物质运转效率密切相关。

关键词: 玉米, 年代更替, 亲本自交系, 灌浆特性, 氮效率

Abstract:

The purpose of this study was to investigate the evolution characteristic of grain filling and nitrogen translocation in maize hybrids parents released in different eras, which provides the critically important information for nitrogen efficient cultivar. Sixteen elite parent lines released in 1960s, 1980s, and 2000s with widely popularized and utilized in China were used in 2007–2008 to analyze the changes in grain filling traits and nitrogen efficiency associated with yields in genetic improvement during the past four decades. The results showed that compared with 1980s and 1960s hybrids and their parents, the modern hybrids and parent lines had higher grain yield significantly, and the correlation analysis indicated that the yield increasing of hybrids closely related to that of their parents (P < 0.05). However, the yield of parents was not significantly related with their ear numbers, and was significant positively correlated with 100-kenerl weight (P < 0.05) in different eras. Compared with 1980s and 1960s hybrids parents, their contemporary parents had higher initiation potential(R0), delayed time of the highest filling rate, and higher growth amount at biggest filling rate (Wmax) and the highest grain filling rate (Gmax). Also, the modern hybrids parents maintained higher dry matter accumulation, stem-sheath matter exportation rate, and stem-sheath matter contribution. As far as nitrogen translocation, the modern hybrids parents had higher N accumulation amount (P < 0.05), without obvious advantages in transportation rate and contribution rate, and higher nitrogen utilization efficiency (NUE) and higher nitrogen harvest index (NHI) (P < 0.05). These demonstrated that the modern hybrids parent lines maintain higher grain yield and nitrogen efficiency, which is closely correlated with stronger grain filling ability and organic matter accumulation efficiency.

Key words: Maize (Zea mays L.), Released in different eras, Parent lines, Grain filling, Nitrogen efficiency

[1]春亮, 陈范骏, 张福锁, 米国华. 不同氮效率玉米杂交种的根系生长、氮素吸收与产量形成. 植物营养与肥料学报, 2005, 11: 615–619



Chun L, Chen F J, Zhang F S, Mi G H. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency. Plant Nutr Fert Sci, 2005, 11: 615–619 (in Chinese with English abstract)



[2]刘建安, 米国华, 张福锁. 不同基因型玉米氮效率差异的比较研究. 农业生物技术学报, 1999, 7: 248–254



Liu J A, Mi G H, Zhang F S. Difference in nitrogen efficiency among maize genotypes. Journal Agriculture Biotech, 1999, 7: 248–254 (in Chinese with English abstract)



[3]Chen F J, Fang Z G, Gao Q, Ye Y L. Jia L L, Yuan L X, Mi G H, Zhang F S. Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Sci China Life Sci, 2013, 43: 342–350



[4]Duvick D N, Cassman K G. Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Science, 1999, 39: 1662–1630



[5]戴景瑞. 我国玉米遗传育种的回顾与展望. 玉米遗传育种国际学术讨论会文集. 吉林长春, 2000, 9: 1–7



Dai J R. The review and prospect of genetic breeding in maize of China. In: Proceedings of International Academic Symposium in Genetic Breeding of China. Changchun, 2000, 9: 1–7 (in Chinese)



[6]Ding L, Wang K J, Jiang G M, Biswas D K, Xu H, Li L F, Li Y H. Effect of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Ann Bot, 2005, 96: 925–930



[7]李绍长, 盛茜, 陆嘉惠, 孟宝民. 玉米籽粒灌浆生长分析. 石河子大学学报(自然科学版), 1999(增刊-1): 1–5



Li S C, Sheng Q, Lu J H, Meng B M. Growth Analysis on the Process of Grain Filling in Maize. J Shihezi Univ (Nat Sci), 1999, (suppl-1): 1–5 (in Chinese with English abstract)



[8]秦泰辰, 李增禄. 玉米籽粒发育性状的遗传及与产量性状关系的研究. 作物学报, 1991, 17: 185–191



Qin T C, Li Z L. Studies on the inheritance of the kernel growth characters and their relation to the yield characters in maize (Zea mays L.). Acta Agron Sin, 1991, 17(3): 185–191 (in Chinese with English abstract)



[9]王晓东, 史振声, 李明顺, 朴琳, 鲁俊田. 我国北方不同年代玉米自交系穗部性状的演变及与产量的关系. 玉米科学, 2011, 19(2): 6–11



Wang X D, Shi Z S, Li M S, Piao L, Lu J T. Evolution on Ear Traits of Maize Inbred Line in North China and Their Relationships with Yield. J Maize Sci, 2011, 19(2): 6–11 (in Chinese with English abstract)



[10]Ottariano. Phenotypic and genetic relation-ships between yield components in maize. Eupyhtica, 1981, 30: 601–609



[11]刘宗华, 卫晓轶, 胡彦民, 谭晓军, 汤继华. 低氮胁迫对不同基因型玉米生物产量和氮吸收率动态变化的影响. 玉米科学, 2010, 18(5): 53–59



Liu Z H, Wei X Y, Hu Y M, Tan X J, Tang J H. Dynamic variation of biomass and nitrogen absorption ratio of different genotypes in maize under low nitrogen stress. J Maize Sci, 2010, 18(5): 53–59 (in Chinese with English abstract)



[12]徐祥玉, 张敏敏, 翟丙年, 李生秀, 张兴昌, 王朝辉. 夏玉米氮效率基因型差异研究. 植物营养与肥料学报, 2006, 12: 495– 499



Xu X Y, Zhang M M, Zhai B N, Li S X, Zhang X C, Wang C H. Genotypic variation in nitrogen use efficiency in summer maize. Plant Nutr Fert Sci, 2006, 12: 495– 499 (in Chinese with English abstract)



[13]米国华, 刘建安, 张福锁. 玉米杂交种的氮农学效率及其构成因素剖析. 中国农业大学学报, 1998, 3(增刊-1): 97–104



Mi G H, Liu J A, Zhang F S. Analysis on agronomic nitrogen efficiency and its components of maize hybrids. J China Agric Univ, 1998, 3(suppl-1): 97–104 (in Chinese with English abstract)



[14]Heuberger H. Nitrogen efficiency in tropical maize (Zea may L.) indirect selection criteria with special emphasis on morphological root characteristics. Ph D Dissertation of University of Hannover, Germany, 1998



[15]向春阳, 田秀平, 杨克军, 董炳友. 典型玉米自交系氮素吸收利用特点的研究. 中国农学通报, 2005, 21(3): 146–149



Xiang C Y, Tian X P, Yang K J, Dong B Y. Research on the nitrogen absorption and utilization of typical maize inbreds. Chin Agric Sci Bull, 2005, 21(3): 146–149 (in Chinese with English abstract)



[16]王玲敏, 叶优良, 陈范骏, 尚云峰. 施氮对不同品种玉米产量、氮效率的影响. 中国生态农业学报, 2012, 20: 529–535



Wang L M, Ye Y L, Chen F J, Song Y F. Effect of nitrogen fertilization on maize yield and nitrogen efficiency of different maize varieties. Chin J Eco-Agric, 2012, 20: 529–535 (in Chinese with English abstract)



[17]Swank J C, Below F E, Lambert R J, Hageman R H. Principles and Procedures of Statistics: a Biometrical Approach. New York, NY: McGraw-Hill Book Co. 1982



[18]Wu Q P, Chen F J, Chen Y L, Yuan L X, Zhang F S, Mi G H. Root growth in response to nitrogen supply in Chinese maize hybrids released between 1973 and 2009. Sci China Life Sci, 2011, 41: 472–480



[19]朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182–193



Zhu Q S, Cao X Z, Luo Y Q. Growth analysis in the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182–193 (in Chinese with English abstract)



[20]Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factor which contribute to efficiency of nitrogen utilization. Agron J, 1982, 74: 562–564



[21]李从锋, 赵明, 刘鹏, 张吉旺, 杨今胜, 柳京国, 王空军, 董树亭. 中国不同年代玉米单交种及其亲本主要性状演变对密度的响应. 中国农业科学, 2013, 46: 2421–2429



Li C F, Zhao M, Liu P, Zhang J W, Yang J S, Liu J G, Wang K J, Dong S T. Responses of main traits of maize hybrids and their parents to density in different eras of china. Sci Agric Sin, 2013, 46: 2421–2429 (in Chinese with English abstract)



[22]Bruulsema T W, Tollenaar M, Heckman J R. Boosting crop yields in the next century. Better Crops Plant Food, 2000, 84: 9–11



[23]李召锋, 梁晓玲, 阿布来提, 李铭东, 韩登旭, 邵红雨, 曹连莆. 玉米自交系单株产量与相关农艺性状的灰色关联度分析. 新疆农业科学, 2009, 46: 232– 236



Li Z F, Ling X L, A B L T, Li M D, Han D X, Shao H Y, Cao L P. Gray correlation degree of signal plant yield of maize inbred lines and its correlated characters. Xinjiang Agric Sci, 2009, 46: 232– 236 (in Chinese with English abstract)



[24]Jorge B. Physiological bases for yield differences in selected maize cultivars from Central America. Field Crops Res, 1995, 42: 69–80



[25]黄智鸿, 王思远, 申林, 曹洋, 孙刚, 郝满, 吴春胜. 超高产玉米籽粒的灌浆特性. 西北农业学报, 2007, 16(4): 14–18



Huang Z H, Wang S Y, Shen L, Cao Y, Sun G, Hao M, Wu C S. Study on characteristic of grain filling of super high yield Maize. Acta Agric Boreali-Occid Sin, 2007, 16(4): 14–18 (in Chinese with English abstract)



[26]吴春胜. 超高产玉米灌浆速率与干物质积累特性研究. 吉林农业大学学报, 2008, 30(4): 382–385



Wu C S Studies on characteristics of grain filling and dry matter accumulation of super high yield maize. J Jilin Agric Univ, 2008, 30: 382–385 (in Chinese with English abstract)



[27]Chen X C, Chen F J, Chen Y L, Gao Q, Yang X L, Yuan L X, Zhang F S, Mi G H. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use ef?ciency despite adverse climate change. Global Change Biol, 2013: 19, 923–936



[28]Johnson D R, Tanner J W. Calculation of the rate and duration of grain filling in corn (Zea mays L.). Crop Sci, 1972, 12: 485–486



[29]Tollenaar M, Aguilera A. Radiation use efficiency of an old and a new maize hybrid. Agron J, 1992, 84: 536–541



[30]Tollenaar M. Physiological basis of genetic improvement of maize hybrids in Ontario from 1959 to 1988. Crop Sci, 1991, 31:119–124



[31]张福锁, 米国华, 刘建安. 玉米氮效率遗传改良及其应用. 农业生物技术学报, 1997, 2: 112–117



Zhang F S, Mi G H, Liu J A. Advances in the Genetic Improvement of Nitrogen Efficiency in Maize. J Agric Biotechnol, 1997, 2: 112–117 (in Chinese with English abstract)



[32]Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci, 1999, 39: 1597–1604



[33]关义新, 马兴林, 向春阳, 凌碧莹. 不同玉米自交系氮效率的分析. 玉米科学, 2004, 12(1): 100–102



Guan Y X, Ma X L, Xiang C Y, Ling B Y. Analysis on nitrogen use efficiency of different maize inbred. J Maize Sci, 2004, 12(1): 100–102 (in Chinese with English abstract)



[34]王艳, 米国华, 陈范骏, 张福锁. 玉米氮素吸收的基因型差异及其与根系形态的相关性. 生态学报, 2003, 23: 297–302



Wang Y, Mi G H, Chen F J, Zhang F S. Genotypic differences in nitrogen uptake by maize inbredlines its relation to root morphology. Acta Ecol Sin, 2003, 23: 297–302 (in Chinese with English abstract)



[35]崔文芳, 高聚林, 王志刚, 崔超, 胡树平, 于晓芳, 孙继颖, 苏治军. 玉米自交系氮效率基因型差异分析. 玉米科学, 2013, 21(3): 6–12



Cui W F, Gao J L, Wang Z G, Cui C, Hu S P, Yu X F, Sun J Y, Su Z J. Analysis on genotypic difference in nitrogen efficiency of maize inbred Lines. J Maize Sci, 2013, 21(3): 6–12 (in Chinese with English abstract)



[36]王晓慧, 曹玉军, 魏雯雯, 张磊, 王永军, 边少锋, 王立春. 我国北方37个高产春玉米品种干物质生产及氮素利用特性. 植物营养与肥料学报, 2012, 18: 60–68



Wang X H, Cao Y J, Wei W W, Zhang L, Wang Y J, Bian S F, Wang L C. Characteristics of dry matter production and nitrogen use efficiency of 37 spring maize hybrids with high-yielding potential in north of China. Plant Nutr Fert Sci, 2012, 18: 60–68 (in Chinese with English abstract)



[37]颜军, 杨德光. 4个玉米品种氮素利用效率的比较研究. 玉米科学, 2010, 18(2): 91–95



Yan J, Yang D G. Comparison on N utilization efficiency of four maize varieties. J Maize Sci, 2010, 18(2): 91–95 (in Chinese with English abstract)



[38]陈范骏, 米国华, 张福锁, 王艳, 刘向生, 春亮. 华北区部分主栽玉米杂交种的氮效率分析. 玉米科学, 2003, 11(2): 78–82



Chen F J, Mi G H, Zhang F S, Wang Y, Liu X S, Chun L. Nitrogen use efficiency in some of main maize hybrids grown in north china. J Maize Sci, 2003, 11(2): 78–82 (in Chinese with English abstract)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!