作物学报 ›› 2014, Vol. 40 ›› Issue (12): 2070-2080.doi: 10.3724/SP.J.1006.2014.02070
张涛1,2,**,孙玉莹3,**,郑建敏4,**,程治军3,蒋开锋1,2,杨莉1,2,曹应江1,2,游书梅1,2,万建民3,郑家奎1,2,5,*
ZHANG Tao1,2,**,SUN Yu-Ying3,**,ZHENG Jian-Min4,**,CHENG Zhi-Jun3,JIANG Kai-Feng1,2,YANG Li1,2,CAO Ying-Jiang1,2,YOU Shu-Mei1,2,WAN Jian-Min3,ZHENG Jia-Kui1,2,5,*
摘要:
叶片早衰引起叶绿素和其他大分子被降解, 叶片光合能力降低。这个过程常伴随着活性氧(ROS)的积累, 以及细胞中抗氧化酶(SOD、CAT和APX)活性的降低, 衰老相关基因(SAG)表达量上调, 最终导致整个植株过早成熟, 产量降低。因此, 研究水稻早衰遗传机制和基因功能对于水稻的遗传改良具有重要的作用和意义。PLS2是通过航天育种工程经空间辐射诱变得来的突变体, 在孕穗期表现早衰。与野生型相比, PLS2的光合能力降低, 株高变矮, 节间和穗长缩短, 分蘖数和有效分蘖数减少, 穗粒数和结实率明显下降, 千粒重降低, 穗发育不良, 灌浆不充分; 叶片的CAT活性显著降低、H2O2积累、死亡细胞增加, 叶绿体结构变差, 叶绿体中淀粉和嗜锇颗粒增多。黑暗处理加速突变体叶片衰老, 叶绿体超微结构球状化。利用PLS2/蜀恢527和PLS2/02428的隐性定位群体, 将pls2定位在第3染色体标记RM14704 (8674283 bp)与SL-I-5 (8758394 bp)之间, 物理距离84.11 kb, 区间内包括14个基因, 测序发现在LOC_Os03g15840第9个外显子第41位的C被替换为T, 导致精氨酸(R)替换为半胱氨酸(C), LOC_Os3g15840编码水稻中的一个糖基转移酶(glycosyltransferases, GTs), 可能是pls2的候选基因。为下一步调控基因的克隆和功能研究奠定了基础。
[1]Navabpour S, Morris K, Allen R, Harrison E, A-H-Mackerness S, Buchanan-Wollaston V. Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot, 2003, 54: 2285–2292[2]袁政, 张大兵. 植物叶片衰老的分子机制. 植物生理学通讯, 2002, 38: 417–422Yuan Z, Zhang D B. The molecular mechanism of leaf senescence. Plant Physiol Commun, 2002, 38(4): 417–422 (in Chinese with English abstract)[3]He Y, Tang W, Swain J D, Green A L, Jack T P, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol, 2001, 126: 707–716[4]Eckardt N A. A new chlorophyll degradation pathway. Plant Cell, 2009, 21: 700–700[5]Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115–136[6]Cha K W, Lee Y J, Koh H J, Lee B M, Nam Y W, Paek N C. Isolation, characterization, and mapping of stay green mutant in rice. Theor Appl Genet, 2002, 104: 526–532[7]Lee R H, Lin M C, Chen S C. A novel alkaline a-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol, 2004, 55: 281–295[8]Ansari M I, Lee R H, Chen S C. A novel senescence-associated gene encoding GABA: pyruvate transaminase is up-regulated during rice leaf senescence. Physiol Plant, 2005, 123: 1–8[9]Kong Z S, Li M N, Yang W Q, Xu W Y, Xue Y B. A novel nuclear localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376–1388[10]Jiang H W, Li M R, Liang N T, Yan H B, Wei Y B, Xu X L, Liu J, Xu Z F, Chen F, Wu G J. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209[11]Park S Y, Yu J W, Park J S, Li J J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664[12]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORINGI is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375[13]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40[14]Qiao Y L, Jiang W Z, Lee J H, Park B S, Choi M S, Piao R H, Woo M O, Roh J H, Han L Z, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2009, 185: 258–274[15]Li F Z, Hu G C, Fu Y P, Si H M, Bai X M, Sun Z X. Genetic analysis and high-resolution mapping of premature senescence gene Pse(t) in rice (Oryza sativa L.). Genome, 2005, 48: 738–746[16]Wang J, Wu S J, Zhou Y, Zhou L H, Xu J F, Hu J, Fang Y X, Gu M H, Liang G H. Genetic analysis and molecular mapping of a presenescing leaf gene pls1 in rice (Oryza sativa L.). Chin Sci Bull, 2006, 51: 2986–2992[17]Yan W Y, Ye S, Jin Q S, Zeng L J, Peng Y, Yan D W, Yang W B, Yang D L, He Z H, Dong Y J, Zhang X M. Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. J Genet Genomics, 2010, 37: 47–55[18]Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Cong Y F, He G H. Genetic analysis and high-resolution mapping of pls3 (presenescing leaf 3) in rice. Chin Sci Bull, 2010, 55: 1676–1681[19]Yang Y L, Rao Y C, Liu H J, Fang Y X, Dong G J, Huang L C, Leng Y J, Guo L B, Zhang G H, Hu J, Gao Z Y, Qian Q, Zeng D L. Characterization and fine mapping of an early senescence mutant (es-t) in Oryza sativa L. Chin Sci Bull, 2011, 56: 2437−2443[20]杜青, 方立魁, 桑贤春, 凌英华, 李云峰, 杨正林, 何光华, 赵芳明. 水稻叶尖早衰突变体lad的形态、生理分析与基因定位. 作物学报, 2012, 38: 168–173Du Q, Fang L K, Sang X C, Ling Y H, Li Y F, Yang Z L, He G H, Zhao F M. Analysis of phenotype and physiology of leaf apex dead mutant (lad) in rice and mapping of mutant gene. Acta Agron Sin, 2012, 38: 168–173 (in Chinese with English abstract)[21]徐芳芳, 桑贤春, 任德勇, 唐彦强, 胡宏伟, 杨正林, 赵芳明, 何光华. 水稻早衰突变体esl2的遗传分析和基因定位. 作物学报, 2012, 38: 1347–1353Xu F F, Sang X C, Ren D Y, Tang Y Q, Hu H W, Yang Z L, Zhao F M, He G H. Genetic analysis and gene mapping of early senescence leaf mutant esl2 in rice. Acta Agron Sin, 2012, 38: 1347–1353 (in Chinese with English abstract)[22]苗润隆, 蒋钰东, 廖红香, 徐芳芳, 何光华, 杨正林, 赵芳明, 桑贤春. 水稻早衰突变体esl3的鉴定与基因定位. 作物学报, 2013, 39: 862–867Miao R L, Jiang Y D, Liao H X, Xu F F, He G h, Yang Z L, Zhao F M, Sang X C. Identification and gene mapping of rice early senescent leaf (esl3) mutant. Acta Agron Sin, 2013, 39: 862–867 (in Chinese with English abstract)[23]王复标, 黄福灯, 程方民, 李兆伟, 胡东维, 潘刚, 毛愉婵. 水稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观察. 作物学报, 2012, 38: 871–879Wang F B, Huang F D, Cheng F M, Li Z W, Hu D W, Pan G, Mao Y C. Photosynthesis and chloroplast ultra-structure characteristics of flag leaves for a premature senescence rice mutant. Acta Agron Sin, 2012, 38: 871–879[24]Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.). Genes Genet Syst, 2012, 87: 169–179[25]Lin A H, Wang Y Q, Tang J Y, Xue P, Li C L, Liu L C, Hu B,Yang F Q, Loake G J, Chu C C. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide induced leaf cell death in rice. Plant Physiol, 2012, 158: 451−464[26]张涛, 郑家奎, 蒋开锋, 郑建敏, 杨乾华, 杨莉, 万先齐, 曹应江. 水稻航天衰老突变体基因psl2的表型和遗传分析. 分子植物育种, 2010, 8: 245–251Zhang T, Zhen J K, Jiang K F, Zheng J M, Yang Q H, Yang L, Wan X Q, Cao Y J. Phenotypes and genetic analysis of a senescence mutant by aeronautics in rice. Mol Plant Breed, 2010, 8: 245–251(in Chinese with English abstract)[27]张涛. 水稻糙米蛋白质含量的QTL定位及香稻的资源研究. 四川农业大学博士学位论文, 四川雅安, 2007. p 25Zhang T. QTL Mapping of Brown Rice Protein Content in a RIL Population of Rice and Analysis of Genetic Diversity of Aromatic Rice Varieties. PhD Dissertation of Sichuan Agricultural University, Sichuan, China, 2007. p 25(in Chinese with English abstract)[28]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76[29]Lin Q B, Wang D, Dong H, Gu S H, Cheng Z J, Gong J, Qin R Z, Jiang L, Li G, Wang J L, Wu F Q, Guo X P, Zhang X, Lei C L, Wang H Y, Wan J M. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM1. Nat Commun, 2012, 3: 752, DOI: 10.1038/ncomms1716 www.nature.com/naturecommunications[30]Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O,Nam H G, Lin J F, Wu S H, Swidzinski J, Ishizaki K, Leaver C J. Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation induced senescence in Arabidopsis. Plant J, 2005, 42: 567–585[31]马跃芳, 陆定志. 灌水方式对杂交水稻衰老及生育后期一些生理活性的影响. 中国水稻科学, 1990, 4(2): 56–62Ma Y F, Lu D Z. Effect of irrigation modes on the senescence and physiological activity in hybrid rice after heeding. Chin J Rice Sci, 1990, 4(2): 56–62 (in Chinese with English abstract)[32]Woo H H, Jeong B R, Koo K B, Choi J W, Hirsch A M, Hawes M C. Modifying expression of closely related UDP-glycosyltransferases from pea and Arabidopsis results in altered root development and function. Physiol Plant, 2007, 130: 250–260 |
[1] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[2] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[3] | 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183. |
[4] | 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627. |
[5] | 王素芳,薛惠云,张志勇,汤菊香. 棉花根系生长与叶片衰老的协调性[J]. 作物学报, 2020, 46(01): 93-101. |
[6] | 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675. |
[7] | 翟玉山,赵贺,张海,邓宇晴,程光远,杨宗桃,王彤,彭磊,徐倩,董萌,徐景升. 甘蔗NAD(P)H脱氢酶复合体O亚基基因克隆及其与甘蔗花叶病毒VPg互作[J]. 作物学报, 2019, 45(10): 1478-1487. |
[8] | 吕国锋,范金平,张伯桥,高德荣,王慧,刘业宇,吴素兰,程凯,王秀娥. 小麦旗叶衰老过程不同数学模型拟合比较及衰老特征分析[J]. 作物学报, 2019, 45(1): 144-152. |
[9] | 李荣发,刘鹏,杨清龙,任昊,董树亭,张吉旺,赵斌. 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响[J]. 作物学报, 2018, 44(7): 1032-1042. |
[10] | 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874. |
[11] | 施军琼, 王亚琴, 张天泉, 马玲, 桑贤春, 何光华. 水稻黄绿叶基因Yellow-Green Leaf 6 (YGL6)的表达模式与蛋白定位[J]. 作物学报, 2018, 44(05): 650-656. |
[12] | 万丽丽, 王转茸, 辛强, 董发明, 洪登峰, 杨光圣. BnA7HSP70分子伴侣结合蛋白超表达能够提高甘蓝型油菜耐旱性[J]. 作物学报, 2018, 44(04): 483-492. |
[13] | 秦丽霞, 李静, 张换样, 李盛, 竹梦婕, 焦改丽, 吴慎杰. 棉花半乳糖基转移酶基因GhGalT1启动子的克隆及表达分析[J]. 作物学报, 2018, 44(02): 218-226. |
[14] | 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863. |
[15] | 范元芳,杨峰*,刘沁林,谌俊旭,王锐,罗式伶,杨文钰*. 套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响[J]. 作物学报, 2017, 43(02): 277-285. |
|