欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (05): 766-777.doi: 10.3724/SP.J.1006.2015.00766

• 耕作栽培·生理生化 • 上一篇    下一篇

油菜生育期动态模拟模型的构建

张亚杰1,2,李京1,彭红坤1,陈秀斌1,郑红裕1,陈升孛2,刘安国1,胡立勇1,*   

  1. 1 华中农业大学植物科学技术学院, 湖北武汉 430070; 2 海南省气象局, 海南海口 570203
  • 收稿日期:2014-07-04 修回日期:2015-02-06 出版日期:2015-05-12 网络出版日期:2015-03-13
  • 通讯作者: 胡立勇, E-mail: liyonghu@mail.hzau.edu.cn
  • 基金资助:

    本研究由国家科技支撑计划项目(2010BAD01B01), 国家现代农业产业技术体系建设专项(NYCYTC-00510)和湖北省现代农业产业技术体系建设项目资助。

Dynamic Simulation Model for Growth Duration of Rapeseed (Brassica napus)

ZHANG Ya-Jie1,2,LI Jing1,PENG Hong-Kun1,CHEN Xiu-Bin1,ZHENG Hong-Yu1,CHEN Sheng-Bei2,LIU An-Guo1,HU Li-Yong1,*   

  1. 1 College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China; 2 Hainan Meteorological Service, Haikou 570203, China
  • Received:2014-07-04 Revised:2015-02-06 Published:2015-05-12 Published online:2015-03-13
  • Contact: 胡立勇, E-mail: liyonghu@mail.hzau.edu.cn

摘要:

在13个不同熟期甘蓝型油菜品种的2年大田试验中, 调查不同播期条件下各品种的生育进程及发育状态。依据油菜生理发育时间恒定原理、生理生态理论及各生育阶段与温度、光周期等外部环境关系, 采用Logistic曲线描述油菜光周期效应, 谐波分析法分析气温昼夜变化, 分段正弦指数函数分析热效应和低温春化效应, 结合上述因素构建油菜生育期动态模拟模型; 确定模型光周期敏感因子、温度敏感性、生理春化时间和角果期因子4个遗传参数; 模型的检验分析表明, 对不同播期模拟值与观测值的根均方差平均值为2.67 d, 对不同品种模拟值与观测值的根均方差平均值为3.74 d; 4个遗传参数值对13个油菜品种聚类分析的结果符合品种特性。因此, 该模型在一定范围内可准确揭示油菜对温、光的反应规律, 具有较强的可靠性和预测性。

关键词: 油菜, 生育期, 生理发育时间, 动态模拟模型

Abstract:

Field experiments with different sowing dates were carried out for two successive years using 13 rapeseed (Brassica napus) varieties with different growth durations to focus on the growth and development processes of the varieties under different photoperiod-temperature conditions. A dynamic simulation model for predicting growth duration of rapeseed was developed by a combined analysis on different factors. The theory of rapeseed physiological ecology, the principle of constant physiological development time (PDT), and the relationships between different growth and development stages and environmental factors such as temperature and photoperiod were the basis for simulating the model. Logistic curve was used to simulate photoperiod effect, harmonic analysis was used to analyze the changes of day and night temperatures, and piecewise functions of sine exponent equation was adopted to describe thermal and vernalization effects. Four parameters with genetic characteristics, including photoperiod susceptibility, temperature sensitivity, physiological vernalization time and pod period factor, were determined and verified for the accuracy of the model. The test results showed the average of the root mean square errors (RMSE) between the observed and simulated values was 2.67 days for different sowing dates, and 3.74 days for different varieties, respectively. Clustering analysis using four genetic parameters verified the classification of 13 varieties and conformed to their characteristics. The results indicated the model can reveal relative accurately within certain range the response of rapeseed to temperature and photoperiod. Therefore, it can be used as a reliable tool for predicting the growth duration of rapeseed.

Key words: Rapeseed (Brassica napus L.), Growth duration, Physiological development time (PDT), Dynamic simulation model

[1]Kiniry J R, Major D J, Izaurralde R C, Williams J R, Gasman P W, Morrison M, Bergentine R, Zenter R P. EPIC model parameters for cereal, oilseed, and forage crops in the northern Great Plains region. Can J Plant Sci, 1995, 75: 679–688



[2]Williams J R, Jones C A, Kiniry J R, Spanel D A. The EPIC crop growth model. Trans ASAE, 1989, 32: 497–511



[3]Gabrielle B, Denoroy P, Gosse G, Justes E, Andersen M N. Development and evaluation of a CERES-type model for winter oilseed rape. Field Crops Res, 1998, 57: 95–111



[4]高亮之. 农业模型学基础. 香港: 天马图书有限公司, 2004. pp 69–70, 137–138, 155–160



Gao L Z. Foundation of Agricultural Modeling Science. Hong Kong: Tianma Books Co., Ltd, 2004. pp 69–70 (in Chinese)



[5]Habekotte B. A model of the phonological development of winter oilseed rape (Brassica napus L.). Field Crops Res, 1997, 54: 127–136



[6]Robertson M J, Holland J F, Kirkegaard J A, Smith C J. Simulating growth and development of canola in Australia. In: Proceedings of the 10th International Rapeseed Congress, Canberra, 1999



[7]Miralles D J, Ferro B C, Slafer G A. Developmental responses to sowing date in wheat, barley and rapeseed. Field Crops Res, 2001, 71: 211–223



[8]刘洪, 金之庆. 油菜发育动态模拟模型. 应用气象学报, 2003, 14: 634–640



Liu H, Jin Z Q. A phonological model to simulate rape development. J Appl Meteorol Sci, 2003, 14: 634–640 (in Chinese with English abstract)



[9]刘铁梅, 胡立勇, 赵祖红, 曹凑贵, 曹卫星, 严美春. 油菜发育过程及生育期机理模型的研究: I. 模型的描述. 中国油料作物学报, 2004, 26: 27–31



Liu T M, Hu L Y, Zhao Z H, Cao C G, Cao W X, Yan M C. A mechanistic of phasic and phonological development in rape: ?. Description of the model. Chin J Oil Crop Sci, 26: 27–31 (in Chinese with English abstract)



[10]汤亮, 朱艳, 刘铁梅, 曹卫星. 油菜生育期模拟模型研究. 中国农业科学, 2008, 41: 2493–2498



Tang L, Zhu Y, Liu T M, Cao W X. A process-based model for simulating phenological development in rapeseed. Scia Agric Sin, 2008, 41: 2493–2498 (in Chinese with English abstract)



[11]曹宏鑫, 张春雷, 李光明, 张保军, 赵锁劳, 汪宝卿, 金之庆. 油菜生长发育模拟模型研究. 作物学报, 2006, 23: 1530–1536



Cao H X, Zhang C L, Li G M, Zhang B J, Zhao S L, Wang B Q, Jin Z Q. Researches of simulation models of rape (Brassica napus L.) growth and development. Acta Agron Sin, 2006, 23: 1530–1536 (in Chinese with English abstract)



[12]曹卫星, 江海东. 小麦温光反应与发育进程的模拟. 南京农业大学学报, 1996, 19(1): 9–16



Cao W X, Jiang H D. Modeling thermal-photo response and development progress in wheat. J Nanjing Agric Univ, 1996, 19(1): 9–16 (in Chinese with English abstract)



[13]曹卫星, 罗卫红. 作物系统模拟及智能管理. 北京: 高等教育出版社, 2003. pp 22–31



Cao W X, Luo W H. Crop System Simulation and Intelligent Management. Beijing: Higher Education Press, 2003. pp 22–33 (in Chinese)



[14]刘后利. 实用油菜栽培学. 上海: 上海科学技术出版社, 1987. pp 128–142, 571–572



Liu H L. Applied Cultivation of Rapeseed. Shanghai: Shanghai Scientific & Technical Publishers, 1987. pp 128–142, 571–572 (in Chinese)



[15]胡立勇, 丁艳锋. 作物栽培学. 北京: 高等教育出版社, 2008. pp 380–381, 387–388



Hu L Y, Ding Y F. Cultivation of Crop. Beijing: Higher Education Press, 2008. pp 380–381, 387–388 (in Chinese)



[16]严美春, 曹卫星, 罗卫红, 江海东. 小麦发育过程及生育期机理模型的研究: I. 建模的基本设想与模型的描述. 应用生态学报, 2000, 11(2): 1–9



Yan M C, Cao W X, Luo W H, Jiang H D. A mechanistic model of phasic and phenological development of wheat: I. Assumption and description of the model. Chin J Appl Ecol, 2000, 11(2): 1–9 (in Chinese with English abstract)



[17]Loague K, Green R E. Statistical and graphical methods for evaluating solute transport models: overview and application. J Contam Hydrol, 1991, 7: 51–73



[18]胡立勇, 刘铁梅, 郑小林, 曹凑贵, 曹卫星, 严美春. 油菜发育过程及生育期机理模型的研究: II. 模型的检验和评价. 中国油料作物学报, 2004, 26(2): 51–55



Hu L Y, Liu T M, Zheng X L, Cao C G, Cao W X, Yan M C. Amechanistic of phasic and phonological development in rape: II. Validation and evaluation of the model. Chin J Oil Crop Sci, 2004, 26(2): 51–55 (in Chinese with English abstract)



[19]中国气象局. 地面气象观测规范. 北京: 气象出版社, 2004. pp 268–269



China Meteorological Administration. Surface Weather Observation Standards. Beijing: Meteorological Press, 2004. pp 268–269



[20]信乃诠. 中国农业气象学. 北京: 中国农业出版社, 1999. pp 629–630



Xin N Q. Chinese Agrometeorology. Beijing: China Agriculture Press, 1999. pp 629–630 (in Chinese)



[21]马慰曾. 太阳辐射与气温日变化的模拟. 华中农业大学学报, 1988, 7(3): 216–221



Ma W Z. Simulation of daily variations of solar radiation and air temperature. J Huazhong Agric Univ, 1988, 7(3): 216–221 (in Chinese with English abstract)



[22]Yin X, Goudriaan J, Latinga E A, Vos J, Spiertz H J. A flexible sigmoid growth function of determinate growth. Ann Bot, 2003, 91: 361–371



[23]官春云, 王国槐, 赵均田. 油菜生态特性的研究: I. 甘蓝型油菜光温生态特性的初步研究. 作物学报, 1985, 11: 115–120



Guan C Y, Wang G H, Zhang J T. Studies on ecological characters of rape: I. Preliminary studies on response of rapeseed (Brassica napus L.) to temperature and daylength. Acta Agron Sin, 1985, 11: 115–120 (in Chinese with English abstract)



[24]官春云, 王国槐. 油菜生态特性的研究: IV. 油菜感光敏感性的研究. 中国油料, 1992, (3): 56–57



Guan C Y, Wang G H. Studies on ecological characters of rape: IV. studies of the sensitive stage to long-day in rapeseed (B. napus L.). Chin J Oil Crop, 1992, (3): 56–57 (in Chinese with English abstract)



[25]刘铁梅, 曹卫星, 罗卫红. 小麦抽穗后生理发育时间的计算与生育期的预测. 麦类作物学报, 2000, 20(3) : 29–34



Liu T M, Cao W X, Luo W H. Calculation of physiological development time and prediction of development stages after heading. J Triticeae Crops, 2000, 20(3): 29–34 (in Chinese with English abstract)



[26]张静, 崔颖, 孙尧, 颜梅, 胡立勇. 不同程度干旱胁迫对油菜种子萌发及幼苗生长特性的影响. 干旱地区农业研究, 2011, 29(2): 164–167



Zhang J, Cui Y, Sun Y, Yan M, Hu L Y. Effect of different degree of drought stress on germination and seedling growth of rapeseed (Brassica napus L.). Agric Res Arid Areas, 2011, 29(2): 164–167 (in Chinese with English abstract)



[27]曾宇. 不同施肥量、种植密度对油菜生长及产量的影响. 华中农业大学硕士学位论文, 湖北武汉, 2006



Zeng Y. Effects of Different Fertilizer and Density on the Growth and Yield of Rapeseed. MS Thesis of Huazhong Agricultural University, Wuhan, China, 2006 (in Chinese with English abstract)

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[10] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[11] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[14] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
[15] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!