欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (05): 813-819.doi: 10.3724/SP.J.1006.2015.00813

• 研究简报 • 上一篇    下一篇

去除遮阴后自然强光对小偃54和8602及其杂交后代光合特性的影响

周连杰1,谢彦庆1,徐文1,郭骞欢1,戴双2,赵世杰1,*,宋健民3   

  1. 1 山东农业大学生命科学学院 / 作物生物学国家重点实验室,山东泰安 271018;2 山东省农业科学院农作物资源中心,山东济南 250100;3 山东省农业科学院作物研究所 / 小麦玉米国家工程实验室 / 农业部黄淮北部小麦生物学与遗传育种重点实验室,山东济南 250100
  • 收稿日期:2014-03-31 修回日期:2015-02-06 出版日期:2015-05-12 网络出版日期:2015-02-14
  • 通讯作者: 赵世杰, E-mail: sjzhao@sdau.edu.cn, Tel: 0538-8249767
  • 基金资助:

    本研究由山东省自主创新重大关键技术计划项目(2014GJJS0201), 国家自然科学基金项目(31271635和31171551)和国家现代农业产业体系建设专项(CARS-03-1-8)资助。

Effects of Full Sunlight after Shading on Photosynthetic Characteristics of Xiaoyan 54 and 8602, and Their Hybrids

ZHOU Lian-Jie1,XIE Yan-Qing1,XU Wen1,GUO Qian-Huan1,DAI Shuang2,ZHAO Shi-Jie1,*,SONG Jian-Min3   

  1. 1 College of Life Science, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, China; 2Shandong Center of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 3 Crop Research Institute, Shandong Academy of Agricultural Sciences / National Engineering Laboratory for Wheat and Maize / Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, China
  • Received:2014-03-31 Revised:2015-02-06 Published:2015-05-12 Published online:2015-02-14
  • Contact: 赵世杰, E-mail: sjzhao@sdau.edu.cn, Tel: 0538-8249767

摘要:

黄淮地区冬小麦生育后期常出现阴雨寡照及连阴骤晴等不良气候,本试验目的是阐明弱光逆境解除后自然强光对冬小麦光合特性的影响。在抽穗至开花期对小偃54和8602及其杂交后代小偃81和212遮阴处理(约自然光40%),10 d后去除遮阴,测定恢复过程中亲本与杂交后代旗叶叶绿素含量、光合气体交换、叶绿素荧光等参数。去除遮阴初期,亲本与杂交后代都发生了光抑制,净光合速率(Pn)、叶绿素a/b比值、胞间CO2浓度(Ci)、气孔导度(Gs)、光系统II (PSII)最大量子效率(Fv/Fm)、PSII实际光化学效率(ΦPSII)、非光化学猝灭(NPQ)和电子传递到QA下游的概率(Ψo)都低于对照,并且随着去除遮阴时间的延长逐渐恢复。杂交后代小偃81在去除遮阴后比其2个亲本和另一杂交后代品系212具有相对更高的PnΦPSIIΨo,表明小偃81对环境光强变化的适应性优于其亲本,且相对较高的PSII光化学效率活性和稳定性是其在去除遮阴后拥有更高Pn的原因之一。小偃81更能适应黄淮地区小麦生育后期光照不足和连阴骤晴的不良气候。

关键词: 小偃81, 自然强光, 光合特性

Abstract:

Shading problem often occurs at the late growing period of winter wheat in the Huang-Huai Plain of China. The objective of this study was to explose the effect of full sunlight after the shading treatment on photosynthetic characteristics in wheat. In a filed experiment with 10-day shading (40% of natural light intensity) from heading to anthesis, the photosynthetic characteristics of wheat varieties Xiaoyan 54 and 8602 and their hybrids Xiaoyan 81 and 212 were measured at 0, 1, 3, 5, 7, and 10 days after shading treatment. Photoinhibition was observed in all genotypes when the shading ended, and the photosynthetic rate (Pn), ratio of chlorophyll a to chlorophyll b, intercellular CO2 concentration (Ci), stomatal conductance (Gs), maximum quantum yield of PSII (Fv/Fm), actually photochemical efficiency of PSII (ΦPSII), nonphotochemical quenching (NPQ) and efficiency that an electron moves to QA downstream (Ψo) were lower than those of the control (no shading treatment). However, such reductions were alleviated gradually with the time lasting after shading. The hybrid Xiaoyan 81 had the highest Pn, ΦPSII, and Ψo as compared with other tested genotypes, showing its good adaptability to the change of light intensity. The higher Pn in Xiaoyan 81 than in its parents after shading probably resulted from the higher photochemical efficiency of PSII in Xiaoyan 81. These results suggest that Xiaoyan 81 is a wheat variety suitable to growing in the Huang-Huai Plain with low light intensity problem at late growth period of winter wheat.

Key words: Xiaoyan 81, Full sunlight, Photosynthetic characteristics

[1]Xu C, Yin Y, Wang P, Ni Y, Guo J, Chen E, Cai T, Cui Z, Liu T, Yang D, Wang Z. Responses of photosynthetic characteristics and antioxidative metabolism in winter wheat to post-anthesis shading. Photosynthetica, 2013, 51: 139–150



[2]Burkey K, Wells R. Response of soybean photosynthesis and chloroplast membrane function to canopy development and mutual shading. Plant Physiol, 1991, 97: 245–252



[3]Zheng Y, Mai B, Wu R, Feng Y, Sofo A, Ni Y, Sun J, Li J, Xu J. Acclimation of winter wheat (Triticum aestivum, cv. Yangmai 13) to low levels of solar irradiance. Photosynthetica, 2011, 49: 426–434



[4]乔旭, 张宏芝, 雷钧杰, 王美, 赵奇, 薛丽华, 赛力汗, 陈兴武. 遮阴强度对小麦光合及籽粒灌浆特性的影响. 西北农业学报, 2013, 22: 9–14



Qiao X, Zhang H Z, Lei J J, Wang M, Zhao Q, Xue L H, Sai L H, Chen X W. Effect of shading on photosynthesis and grain-filling characteristics of wheat. Acta Agric Boreali-Occident Sin, 2013, 22: 9–14 (in Chinese with English abstract)



[5]裴保华, 袁玉欣, 王颖. 模拟林木遮光对小麦生育和产量的影响. 河北农业大学学报, 1998, 21(1): 1–5



Pei B H, Yuan Y X, Wang Y. The effect of simulation tree shading to wheat growth and output. J Agric Univ Hebei, 1998, 21(1): 1–5 (in Chinese with English abstract)



[6]孙圆圆, 孙永健, 陈林, 徐徽, 马均. 不同播期和抽穗期弱光胁迫对杂交水稻生理性状及产量的影响. 应用生态学报, 2012, 23: 2737–2744



Sun Y Y, Sun Y J, Chen L, Xu H, Ma J. Effects of different sowing dates and low-light stress at heading stage on the physiological characteristics and grain yield of hybrid rice. Chin J Appl Ecol, 2012, 23: 2737–2744 (in Chinese with English abstract)



[7]郭峰, 曲妍妍, 信长鹏, 梁燕, 梁雪, 田纪春, 孟庆伟, 赵世杰. 弱光下生长的高产小麦品系PH01-35旗叶光合机构对不同光强的响应. 作物学报, 2009, 35: 179–184



Guo F, Qu Y Y, Xin C P, Liang X, Liang Y, Tian J C, Meng Q W, Zhao S J. Response of photosynthetic apparatus to different irradiance in flag leaves of high-yielding winter wheat PH01-35 grown under low light conditions. Acta Agron Sin, 2009, 35: 179–184 (in Chinese with English abstract)



[8]Arnon D. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris L. Plant Physiol, 1949, 24: 1–15



[9]李鹏民, 高辉远, Strasser R. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31: 559–566



Li P M, Gao H Y, Strasser R. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Acta Photophysiol Sin, 2005, 31: 559–566 (in Chinese with English abstract)



[10]Strasser R, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G C, Govindjee, eds. Advances in Photosynthesis and Respiration. Volume 19: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Berlin: Springer, 2004. pp 321–362



[11]Bjorkman O, Holmgen P. Photosynthetic adaptation to light intensity in plants native to shaded and exposed habitats. Plant Physiol, 1966, 19: 845–859



[12]黄卫东, 吴兰坤, 战吉成. 中国矮樱桃叶片生长和光合作用对弱光环境的适应性调节. 中国农业科学, 2004, 37: 1981–1985



Huang W D, Wu L K, Zhan J C. Growth and photosynthesis adaptation of dwarf-type Chinese cherry (Prunus pseudocerasus L. cv. Laiyang) leaves to weak light stress. Sci Agric Sin, 2004, 37: 1981–1985 (in Chinese with English abstract)



[13]崔海岩, 靳立斌, 李波, 赵斌, 董树亭, 刘鹏, 张吉旺. 大田遮阴对夏玉米光合特性和叶黄素循环的影响. 作物学报, 2013, 39: 478–485



Cui H Y, Jin L B, Li B, Zhao B, Dong S T, Liu P, Zhang J W. Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field. Acta Agron Sin, 2013, 39: 478–485 (in Chinese with English abstract)



[14]焦念元, 宁堂原, 赵春, 王芸, 史忠强, 候连涛, 付国占, 江晓东, 李增嘉. 玉米花生间作复合体系光和特性的研究. 作物学报, 2006, 32: 917-923



Jiao N Y, Ning T Y, Zhao C, Wang Y, Shi Z Q, Hou L T, Fu G Z, Jiang X D, Li Z J. Characters of photosynthesis in intercropping system of maize and peanut. Acta Agron Sin, 2006, 32: 917–923 (in Chinese with English abstract)



[15]Acreche M, Briceno-Felis G, Sanchez J, Slafer G. Grain number determination in an old and a modern Mediterranean wheat as affected by pre-anthesis shading. Crop Pasture Sci, 2009, 60: 271–279



[16]Mu H, Jiang D, Wollenweber B, Dai T, Jing Q, W Cao. Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. J Agron Crop Sci, 2010, 196: 38–47



[17]张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 大田遮阴对夏玉米光合特性的影响. 作物学报, 2007, 33: 216–222



Zhang J W, Dong S T, Wang K J, Hu C H, Liu P. Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agron Sin, 2007, 33: 216–222 (in Chinese with English abstract)



[18]Yang X H, Chen X Y, Ge Q Y, Li B, Tong Y P, Zhang A M, Li Z S, Kuang T Y, Lu C M. Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Sci, 2006, 171: 389–397



[19]李茂松, 王春艳, 宋吉青, 迟永刚, 王秀芬, 武永锋. 小麦进化过程中叶片气孔和光合特征演变趋势. 生态学报, 2008, 28: 5385–5391



Li M S, Wang C Y, Song J Q, Chi Y G, Wang X F, Wu Y F. Evolutional trends of leaf stomatal and photosynthetic characteristics in wheat evolutions. Acta Ecol Sin, 2008, 28: 5385–5391 (in Chinese with English abstract)



[20]许大全. 光合作用气孔限制分析中的一些问题. 植物生理学通讯. 1997, 33: 241–244



Xu D Q. Some problems in stomatal limitation analysis of photosynthesis. Plant Physiol Commun, 1997, 33: 241–244



[21]Krause G, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Mol Biol, 1991, 42: 313–349



[22]李潮海, 栾丽敏, 王群, 李宁, 赵亚丽. 苗期遮光及光照转换对不同玉米杂交种光合效率的影响. 作物学报, 2005, 31: 381–385



Li C H, Luan L M, Wang Q, Li N, Zhao Y L. Effect of seedling shading and light intensity transfer on photosynthetic efficiency of different maize (Zea mays L.) hybrids. Acta Agron Sin, 2005, 31: 381–385 (in Chinese with English abstract)



[23]贾士芳, 董树亭, 王空军, 张吉旺, 刘鹏. 弱光胁迫对玉米产量及光合特性的影响. 应用生态学报, 2007, 18: 2456–2461



Jia S F, Dong S T, Wang K J, Zhang J W, Liu P. Effects of weak light stress on grain yield and photosynthetic traits of maize. Chin J Appl Ecol, 2007, 18: 2456–2461 (in Chinese with English abstract)



[24]Govidjee. A role for a light-harvesting antenna complex of photosystem II in photoprotection. Plant Cell, 2002, 14: 1663–1667



[25]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373–399



[26]Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 601–639



[27]Li P M, Cai R G, Gao H Y, Peng T, Wang Z L. Partitioning of excitation energy in two wheat cultivars with different grain protein contents grown under three nitrogen applications in the field. Physiol Plant, 2007, 129: 822–829



[28]Li P M, Cheng L L, Gao H Y, Jiang C D, Peng T. Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. J Plant Physiol, 2009, 166: 1607–1615



[29]Strasser B. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res, 1997, 52: 147–155

[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[4] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[5] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[6] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[7] 杜进勇,柴强,王一帆,范虹,胡发龙,殷文,李登业. 地上地下互作强度对小麦间作玉米光合特性的影响[J]. 作物学报, 2019, 45(9): 1398-1406.
[8] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[9] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[10] 任永福,陈国鹏,蒲甜,陈诚,曾瑾汐,彭霄,马艳玮,杨文钰,王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应[J]. 作物学报, 2019, 45(5): 728-739.
[11] 鱼海跃,闫岩,张钰石,张明才,李召虎. 不同灌溉条件下冠菌素对大豆光合特性与产量的调控效应[J]. 作物学报, 2019, 45(12): 1851-1858.
[12] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
[13] 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874.
[14] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性[J]. 作物学报, 2018, 44(03): 414-422.
[15] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!