欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (06): 889-899.doi: 10.3724/SP.J.1006.2015.00889

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆叶片性状和叶绿素含量QTL间的上位性和环境互作效应

梁慧珍1,余永亮1,杨红旗1,董薇1,许兰杰1,牛永光1,张海洋1,刘学义2,方宣钧3   

  1. 1 河南省农业科学院芝麻研究中心, 河南郑州 450002; 2 山西省农业科学院经济作物研究所, 山西汾阳 032200; 3 海南省热带农业资源开发利用研究所, 海南三亚 572025
  • 收稿日期:2014-11-13 修回日期:2015-02-06 出版日期:2015-06-12 网络出版日期:2015-03-13
  • 基金资助:

    本研究由河南省科技创新杰出人才计划项目(114200510002), 国家转基因生物新品种培育重大专项(2009ZX08018-001B, 2011ZX08004-005, 2014ZX0800402B), 河南省重点科技攻关计划项目(132102110091)和河南省农业科学院专项(201315603, 201315615, 201218334)资助。

Epistatic and QTL × Environment Interaction Effects of QTLs for Leaf Traits and Leaf Chlorophyll Content in Soybean

LIANG Hui-Zhen1,YU Yong-Liang1,YANG Hong-Qi1,DONG Wei1,XU Lan-Jie1,NIU Yong-Guang1,ZHANG Hai-Yang1,LIU Xue-Yi2,FANG Xuan-Jun3   

  1. 1 Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 2 Industrial Crop Research Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, China 3 Hainan Provincial Institute of Tropical Agriculture Resources, Sanya 572025, China
  • Received:2014-11-13 Revised:2015-02-06 Published:2015-06-12 Published online:2015-03-13

摘要:

大豆;叶片性状;叶绿素含量;QTL与环境互作效应;上位互作效应以丰产性好、抗旱力强的栽培大豆晋豆23 (Jindou 23)为母本,山西农家品种半野生大豆灰布支黑豆为父本杂交衍生的447RIL作为供试群体,将亲本及447个家系分别于201120122013年采用随机试验种植,按照标准测量叶长、叶宽和叶柄长3个性状,并于201281日和88日和201382日和89日各测量1次叶绿素含量。采用QTLNETwork 2.0混合线性模型分析方法和主基因+多基因混合遗传分离分析法,对大豆叶片性状和叶绿素含量进行遗传分析和QTL间的上位性和环境互作效应研究。结果表明,叶长受2对加性-加性×加性上位性混合主基因控制,叶宽受3对等效主基因控制,叶柄长受4对加性-加性×加性上位性主基因控制,叶绿素含量受4对加性主基因控制;检测到10个与叶长、叶宽、叶柄长和叶绿素含量相关的QTL,分别位于A1A2C2H_1LO染色体。其中2个叶长QTL分别位于C2L染色体, 2对加性×加性上位互作效应及环境互作效应QTL3个叶宽加性与环境互作QTL分别位于A2C2O染色体;2个叶柄长QTL分别位于LO染色体;3个叶绿素含量QTL分别位于A1C2H_1染色体。叶片性状和叶绿素含量的遗传机制较复杂,加性效应、加性×加性上位互作效应及环境互作效应是大豆叶片性状和叶绿素含量的重要遗传基础。建议大豆分子标记辅助育种中,一方面要考虑起主要作用的QTL,一方面要注重上位性QTL的影响,这对于性状的遗传和稳定表达具有积极的意义。

关键词: 大豆, 叶片性状, 叶绿素含量, QTL与环境互作效应, 上位互作效应

Abstract:

A RIL population containing 447 lines, derived from a cross of cultivar Jingdou 23 × Huibuzhiheidou, as well as their parents were used to analyze inheritance and detect epistatic effects, and QTL × environment (QE) interactions related to leaf traits and leaf chlorophyll content (CC) in soybean using major gene plus polygene mixed inheritance analysis and composite interval mapping (QTL NETwork 2.0). The leaf traits including leaf length (LL), leaf width (LW), leaf stalk length (LSL) were evaluated in 2011, 2012, and 2013, as well as CC was detected on 1 August and 8 August, 2012, and on 2 August and 9 August, 2013. LL was found to be controlled by two pairs of additive-additive by additive epistatic hybrid main genes, LW was found to be controlled by three pairs of equivalent main genes, LSL was found to be controlled by four pairs of additive-additive by additive epistatic major genes, CC was controlled by four pairs of additive major genes. Ten QTLs for LL, LW, LSL, and CC were mapped on the linkage group (LG) A1, A2, C2, H_1, L, and O, separately. Of them two QTLs for LL were mapped on LG C2 and LG L, additive by additive epistatic effect and QE interactions. Three QTLs with additive effect and QE interactions associated with LW were mapped on LG A2, C2, and O. Two QTLs for LSL were mapped on LG L and O. Three QTLs for CC were mapped on LG A1, C2, and H_1. The genetic mechanism for leaf traits and leaf chlorophyll content is more complicated containing additive effect, additive × additive epistatic effect and QE interaction. It is important to consider not only to QTLs with major effects, but also to those with epistatic effects in soybean molecular marker-assisted breeding for stability of expression and inheritance of agronomic traits.

Key words: Soybean, Leaf traits, Leaf chlorophyll content, QTL ×, environment interactions effects, Epistatic effects

[1]Kokubun M. Soybean cultivar difference in leaf photo-synthetic rate and its relation to seed yield. Crop Sci, 1988, 57: 743–748

[2]Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385–403

[3]Thompson J A, Nelson R L, Schweitzer L E. Relationships among specific leaf weight, photosynthetic rate and seed yield in soybean. Crop Sci, 1995, 35: 1575–1581

[4]Ma B L, Morrison M J, Voldeng H D. Leaf greenness and photosynthetic rates in soybean. Crop Sci, 1995, 35: 1411–1414

[5]Secor J, McCarty D R, Shibles R, Green D E. Variability and selection for leaf photosynthesis in advanced generation of soybean. Crop Sci, 1982, 22: 255–259

[6]Haberlandt G. Physiological plant anatomy. London: Macmillan, 1914

[7]Buttery B R, Buzzell R I, Findlay W I. Relationship among photosynthetic rate, bean yield and other characters in field-grown cultivars of soybean. Can J Plant Sci, 1981, 61: 191–198

[8]李仕贵, 何平, 王玉平, 黎汉云, 陈英, 周开达, 朱立煌. 水稻剑叶性状的遗传分析和基因定位. 作物学报, 2000, 26: 261–265

Li S G, He P, Wang Y P, Li H Y, Chen Y, Zhou K D, Zhu L H. Genetic analysis and gene mapping of the leaf traits in rice (Oryza sativa L.). Acta Agron Sin, 2000, 26: 261–265 (in Chinese with English abstract)

[9]刘进, 姚晓云, 李清, 张宇, 任春元, 王嘉宇, 徐正进. 水稻叶片性状QTL分析. 华北农学报, 2012, 27(5): 86–90

Liu J, Yao X Y, Li Q, Zhang Y, Ren C Y, Wang J Y, Xu Z J. QTL analysis for the leaf traits in rice. Acta Agric Boreali-Sin, 2012, 27(5): 86–90 (in Chinese with English abstract)

[10]Xu W W, Subudhi P K, Crasta O R, Rosenow D T, Mullet J E, Nguyen H T. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome, 2000, 43: 461–469

[11]赵慧, 张正斌, 徐萍. 小麦叶片水分利用效率生理性状遗传相关分析. 中国农业科学, 2006, 39: 1796–1803

Zhao H, Zhang Z B, Xu P. Genetic correlation analysis between leaf water use efficiency and relevant physiological traits in wheat. Sci Agric Sin, 2006, 39: 1796–1803 (in Chinese with English abstract)

[12]This D, Borries C, Souyris I, Teulat B. QTL study of chlorophyll content as a genetic parameter of drought tolerance in barley. Barley Genet Newsl, 2000, 30: 20-23

[13]Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan D P, Shan C Y, Hu G H. QTL Analysis of Major Agronomic Traits in Soybean. Agric Sci China, 2007, 6: 399–405

[14]Kim H K, Kang S T, Suh D Y. Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant Breed, 2005, 124: 582–589

[15]仕相林, 孙亚男, 王家麟, 刘春燕, 陈庆山, 胡国华. 大豆叶片性状QTL的定位及Meta分析. 作物学报, 2012, 38: 256–263

Ren X L, Sun Y N, Wang J L, Liu C Y, Chen Q S, Hu G H. Mapping and meta-analysis of QTLs for leaf traits in soybean. Acta Agron Sin, 2012, 38: 256–263 (in Chinese with English abstract)

[16]李广军,李河南,程利国,章元明.大豆叶绿素含量动态表达的QTL分析. 作物学报, 2010, 36: 242–248

Li G J, Li H N, Cheng L G, Zhang Y M. QTL analysis for dynamic expression of chlorophyll content in soybean. Acta Agron Sin, 2010, 36: 242–248 (in Chinese with English abstract)

[17]崔世友, 喻德跃. 大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析. 作物学报, 2007, 33: 744–750

Cui S Y, Yu D Y. QTL mapping of chlorophyll content at various growing stages and its relationship with yield in soybean [Glycine max (L.) Merr.]. Acta Agron Sin, 2007, 33: 744–750 (in Chinese with English abstract))

[18]Lin S, Cianzio S, Shoemaker R. Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed, 1997, 3: 219–229

[19]Kato K K, Palmer R G. Duplicate chlorophyll-deficient loci in soybean. Genome, 2004, 47: 190–198

[20]王珍. 大豆SSR遗传图谱构建及重要农艺性状QTL分析. 广西大学硕士学位论文, 广西南宁, 2004

Wang Z. Construction of Soybean SSR Based Map and QTL Analysis Important Agronomic Traits. MS Thesis of Guangxi University, Nanning, China, 2004 (in Chinese with English abstract)

[21]梁慧珍. 大豆子粒性状的遗传及QTL分析. 西北农林科技大学博士学位论文, 陕西杨凌, 2006

Liang H Z. Genetic analysis and QTL mapping of seed traits in soybean [Glycine max (L.) Merr]. Ph D Thesis of Northwest A&F University, Yangling, China, 2006 (in Chinese with English abstract)

[22]Darvasi A, Weinreb A, Minke V, WeHer J I, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 1993, 134: 943–951

[23]Tang Q Y, Zhang C X. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci, DOI: 2012, 10.1111/j.1744-7917.2012.01519.x

[24]盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003

Gai J Y, Zhang Y M, Wang J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003 (in Chinese)

[25]Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268−1274

[26]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–14

[27]Xiao J, Li J, Yuan L, Tanksley S D. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996, 92: 230–244

[28]Liang H Z, Yu Y L, Yang H Q, Xu L J, Dong W, Du H, Cui W W, Zhang H Y. Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor Appl Genet, 2014, 127: 2127–2137

[29]Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar H E, Zhuang J Y, Zheng K L, Liu G F, Wang G C, Sidhu J S, Srivantaneeyakul S, Singh V P, Bagali P G, Prasanna H C, McLaren G, Khush G S. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet, 2003, 107: 679–690

[30]伍宝朵, 陈海峰, 郭丹丹, 沙爱华, 单志慧, 张晓娟, 杨中路, 邱德珍, 陈水莲, 朱晓玲, 张婵娟, 周蓉, 周新安. 大豆种质资源叶型和荚粒性状的关系及与SSR标记的关联分析. 作物学报, 2012, 38: 1196–1204

Wu B D, Chen H F, Guo D D, Sha A H, Shan Z H, Zhang X J, Yang Z L, Qiu D Z, Chen S L, Zhu X L, Zhang C J, Zhou R, Zhou X A. Relationship of leaflet shape, pod traits and association with SSR markers in soybean germplasm. Acta Agron Sin, 2012, 38: 1196–1204 (in Chinese with English abstract)

[31]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651

[32]Porter C. Inheritance of the Gene(s) Controlling Leaflet Shape in Soybean. MS Thesis of Virginia Polytechnic Institute and State University, 2000

[33]Weiss M G. Genetic linkage in soybeans: linkage group IV. Crop Sci, 1970, 10: 368–370

[34]Bernard R L. Two genes affecting stem termination in soybeans, Crop Sci, 1972, 12: 235–239

[35]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. Anew integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128

[36]Jansen R C, Van Ooijien J M, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91: 33–37

[37]Sabouri H. QTL detection of rice grain quality traits by microsatellite markers using an indica rice (Oryza sativa L.) combination. J Genet, 2009, 88: 81–85

[38]Su C C, Cheng X N, Zhai H Q, Wan J M. Detection and analysis of QTL for resistance to the brown planthopper, Nilaparvata lugens (Stal), in rice (Oryza sativa L.), using backcross inbred lines. Acta Genet Sin, 2002, 29: 332–338

[39]Beaver J S, Osorno J M. Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica, 2009, 168: 145–175

[40]Fanizza G, Gatta C D, Bagnulo C. A non-destructive determination of leaf chlorophyll in Vitis vinifera. Ann Appl Biol, 1991, 119: 203–209

[41]Ma L Q, Zhou E F, Huo N X, Zhou R H, Wang G Y, Jia J Z. Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica, 2007, 153: 109-117

[42]Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336

[43]Mansur L M, Lark K G, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet, 1993, 86: 907–913

[44]王金社, 李海旺, 赵团结, 盖钧镒. 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立. 作物学报, 2010, 36: 191–201

Wang J S, Li H W, Zhao T J, Gai J Y. Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. Acta Agron Sin, 2010, 36: 191–201 (in Chinese with English abstract)

[45]Hagiwara W E, Onish K, Takamure I, Sano Y. Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006, 150: 27–35

[46]Zhang Z H, Yu S B, Yu T, Huang Z, Zhu Y G. Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Res, 2005, 91: 161–170

[47]Rongwen J, Akkaya M S, Bhagwat A A, Lavi U, Cregan P B. The Use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet, 1995, 90: 43–48

[48]张学英, 侯雪琪,周淑芹, 赵九洲,陈洁敏, 宋力平. 浅谈大豆理想株型育种. 大豆通报, 1994, (4): 15–16

Zhang X Y, Hou X Q, Zhou S Q, Zhao J Z, Chen J M, Song L P. Introduction to soybean ideal plant type. Soybean Bull, 1994, (4): 15–16 (in Chinese)

[49]王金陵. 东北地区大豆株型的演变. 大豆通报, 1996, (1): 5–7

Wang J L. The development of soybean plant type in Northeast China. Soybean Bull, 1996, (1): 5–7 (in Chinese)

[50]杜维广, 王育民, 谭克辉. 大豆品种(系)间光合活性的差异及与产量的关系. 作物学报, 1982, 8: 131–134

Du W G, Wang Y M, Tan K H. Varietal difference in photosynthetic activity of soybean and its relation to yield. Acta Agron Sin, 1982, 8: 131–134 (in Chinese with English abstract)

[51]梁建秋, 张明荣, 吴海英. 大豆抗旱性研究进展. 大豆科学, 2010, 29: 341–346

Liang J Q, Zhang M R, Wu H Y. Advances in drought tolerance of soybean. Soybean Sci, 2010, 29: 341–346 (in Chinese with English abstract)

[52]林汉明, 常汝镇, 邵桂花. 中国大豆耐逆研究. 北京: 中国农业出版社, 2009

Lin H M, Chang R Z, Shao G H. Research on tolerance to stresses in Chinese soybean. Beijing: Chinese Agriculture Press, 2009 (in Chinese)

[53]张振宇. 干旱条件下大豆叶片性状分析. 黑龙江农业科学, 2011, (11): 18–19

Zhang Z Y. Soybean leaf traits under drought analysis. Heilongjiang Agricultural Sciences, 2011, (11): 18–19 (in Chinese with English abstract)

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!