欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (06): 881-888.doi: 10.3724/SP.J.1006.2015.00881

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

植物介导的RNA干扰引起马铃薯晚疫病菌基因的沉默

任琴1,王亚军1,郭志鸿1,*,李继平2,谢忠奎1,王若愚1,王立2,惠娜娜2   

  1. 1中国科学院寒区旱区环境与工程研究所,甘肃兰州 730000;2甘肃省农业科学院,甘肃兰州 730070
  • 收稿日期:2015-01-07 修回日期:2015-03-19 出版日期:2015-06-12 网络出版日期:2015-03-30
  • 通讯作者: 郭志鸿, E-mail: guozhhong@hotmail.com
  • 基金资助:

    本研究由国家自然科学基金项目(31101190)和中国科学院“国际人才计划”项目(2015VEB069)资助。

Gene Silence of Phytophthora infestans Induced by Plant-mediated RNA Interference in Potato

REN Qin1,WANG Ya-Jun1,GUO Zhi-Hong1,*,LI Ji-Ping2,XIE Zhong-Kui1,WANG Ruo-Yu1,WANG Li2,HUI Na-Na2   

  1. 1 Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2 Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
  • Received:2015-01-07 Revised:2015-03-19 Published:2015-06-12 Published online:2015-03-30
  • Contact: 郭志鸿, E-mail: guozhhong@hotmail.com

摘要:

由致病疫霉(Phytophthora infestans)引起的晚疫病是最具毁灭性的马铃薯病害。为明确植物介导的RNAi沉默致病疫霉基因的有效性,本研究采用重叠延伸PCR技术克隆同时与晚疫病菌4ces基因均同源的融合基因C1234,构建内含子连接的C1234反向重复序列植物表达载体,采用农杆菌介导法转化晚疫病易感马铃薯品种大西洋,经PCRSouthern杂交检测,获得129个转基因株系。离体叶片接种病原菌后,有97个转基因株系发病速度明显慢于野生型,接种6 d后病斑大小和霉层厚度均明显小于对照,并且叶片感病部位没有出现失绿斑,而野生型产生了明显的失绿斑。实时定量RT-PCR分析发现,发病延缓的叶片上致病疫霉4个纤维素合酶基因的表达水平明显低于野生型。本研究表明转基因植株中产生的以晚疫病菌ces基因为靶标的dsRNA能够沉默致病疫霉相应基因表达,延缓发病进程。

关键词: 植物介导的RNAi, 马铃薯, 致病疫霉, 基因沉默

Abstract:

Potato late blight caused by Phytophthora infestans is the most devastating disease in potato. The objective of the work was to test the efficiency of plant-meidated RNAi in silencing genes in P. infestans and to find a new way to breed potato resistant to late blight. Over-lap PCR was employed to amplify a fused-gene C1234 simultaneously homologous to four cellulose synthase genes in P. infenstans. Then, a plant expression vector containing inverted repeat of C1234 was constructed and transferred to Atlantic, a potato variety severely susceptible to late blight by agrobacteria-mediated genetic transformation. A hundred and twenty nine regenerated lines were confirmed to be transgenic plants with PCR and Southern blot. When detached leaves were inoculated with P. Infestans, 97 out of 129 transgenic lines delayed disease symptoms with smaller lesions and less hyphae compared with the wild type at six days after inoculation. Chlorotic spots disappeared on leaves from transgenic lines while appeared severely on leaves from the wild type at the same day. mRNA accumulation of the four cellulose synthase genes from P. infestans colonized on leaves from transgenic plants with delayed symptoms was significantly lower compared with the wild type with Real-time RT-PCR. The results demonstrated that dsRNA of C1234 generated in transgenic potato could induce homologous genes silence and delay the process of infection in intimately touched P. infestans.

Key words: Plant-mediated RNAi, Potato, Phytophthora infestans, Gene silence

[1]Haverkort A, Boonekamp P, Hutten R, Jacobsen E, Lotz L, Kessel G, Visser R, Van der Vossen E. Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res, 2008, 51: 47–57

[2]Haas B J, Kamoun S, Zody M C, Jiang R H, Handsaker R E, Cano L M, Grabherr M, Kodira C D, Raffaele S, Torto-Alalibo T. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461: 393–398

[3]McDonald B A, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phy opathol, 2002, 40: 349–379

[4]Fry W. Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol, 2008, 9: 385–402

[5]杨艳丽, 肖浪涛, 胡先奇. 马铃薯晚疫病菌毒素与寄主品种抗性关系研究. 中国农业科学, 2009, 42: 2202–2210

Yang Y L, Xiao L Tao, Hu X Q. Study on the relationship between the toxin of Phytophthora infestans and resistance of potato. Sci Agric Sin, 2009, 42: 2202–2210 (in Chinese with English abstract)

[6]Hendrik R, Evert J. 马铃薯广谱抗病Rpi-blb1同源基因抗性被金华晚疫病菌株克服. 园艺学报, 2010, 37: 241–246

Hendrik R, Evert J. Broad spectrum resistance from Rpi-blb1 homologous R-genes has been broken by Phytophthora infestans isolates collected from Solanum stoloniferum. Acta Hort Sin, 2010, 37: 241–246 (in Chinese with English abstract)

[7]徐建飞, 辛翠花, 黄三文. 利用田间抗病基因近等混合系防治马铃薯晚疫病. 中国农业科技导报, 2006, 8: 8–13

Xu J F, Xin C H, Huang S W. Potato late blight control using R-gene polyculture. Rev China Agric Sci Technol, 2006, 8: 8–13 (in Chinese with English abstract)

[8]Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H. Genetic diversity and disease control in rice. Nature, 2000, 406: 718–722

[9]Leung H, Zhu Y, Revilla-Molina I, Fan J X, Chen H, Pangga I, Cruz C V, Mew T W. Using genetic diversity to achieve sustainable rice disease management. Plant Dis, 2003, 87: 1156–1169

[10]Eamens A, Wang M B, Smith N A, Waterhouse P M. RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol, 2008, 147: 456–468

[11]Knip M, Constantin M E, Thordal-Christensen H. Trans-kingdom cross-talk: small RNAs on the move. PLoS Genet, 2014, 10: e1004602

[12]Waterhouse P M, Graham M W, Wang M-B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA, 1998, 95: 13959–13964

[13]Shepherd D N, Martin D P, Thomson J A. Transgenic strategies for developing crops resistant to geminiviruses. Plant Sci, 2009, 176: 1–11

[14]Escobar M A, Civerolo E L, Summerfelt K R, Dandekar A M. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA, 2001, 98: 13437–13442

[15]Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell Online, 2010, 22: 3130–3141

[16]Yin C, Jurgenson J E, Hulbert S H. Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant-Microbe Interact, 2011, 24: 554–561

[17]Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel K H. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci USA, 2013, 110: 19324–19329

[18]Aly R, Cholakh H, Joel D M, Leibman D, Steinitz B, Zelcer A, Naglis A, Yarden O, Gal-On A. Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnol J, 2009, 7: 487–498

[19]Baum J A, Bogaert T, Clinton W, Heck G R, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M. Control of coleopteran insect pests through RNA interference. Nature Biotechnol, 2007, 25: 1322–1326

[20]Mao Y B, Cai W J, Wang J W, Hong G J, Tao X Y, Wang L J, Huang Y P, Chen X Y. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol, 2007, 25: 1307–1313

[21]Upadhyay S K, Chandrashekar K, Thakur N, Verma P C, Borgio J F, Singh P K, Tuli R. RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J Biosci, 2011, 36: 153–161

[22]Goodwin S B, Drenth A, Fry W E. Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Curr Genet, 1992, 22: 107–115

[23]王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 776–777

Wang G L, Fang H Y. Plant Genetic Engineering, 2nd Edn. Beijing: Science Press, 2002. pp 776–777 (in Chinese)

[24]Gustafson V, Mallubhotla S, MacDonnell J, Sanyal-Bagchi M, Chakravarty B, Wang-Pruski G, Rothwell C, Audy P, De Koeyer D, Siahbazi M. Transformation and plant regeneration from leaf explants of Solanum tuberosum L. cv. ‘Shepody’. Plant Cell, Tissue Organ Culture, 2006, 85: 361–366

[25]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4326

[26]Grenville-Briggs L J, van West P. The biotrophic stages of oomycete-plant interactions. Adv Appl Microbiol, 2005, 57: 217–244

[27]李先平, 何云昆, 陈善娜, 赵志坚, 李树莲, 李汝刚. 表达HarpinEa基因的转基因马铃薯的晚疫病抗性分析. 云南农业大学学报, 2002, 7(3): 252–257

Li X P, He Y K, Chen S N, Zhao Z J, Li S L, Li R G. Analysis of late blight resistance in transgenic potato expressing HarpinEa gene. J Yunnan Agric Univ, 2002, 7(3): 252–257 (in Chinese with English abstract)

[28]Grenville-Briggs L J, Anderson V L, Fugelstad J, Avrova A O, Bouzenzana J, Williams A, Wawra S, Whisson S C, Birch P R, Bulone V. Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. Plant Cell Online, 2008, 20: 720–738

[29]Koch A, Kogel K H. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol J, 2014, 12: 821–831

[30]Price D R G, Gatehouse J A. RNAi-mediated crop protection against insects. Trends Biotechnol, 2008, 26: 393–400

[31]Duan C G, Wang C H, Guo H S. Application of RNA silencing to plant disease resistance. Silence, 2012, 3: 5

[32]Zhang M, Wang Q, Xu K, Meng Y, Quan J, Shan W. Production of dsRNA sequences in the host plant is not sufficient to initiate gene silencing in the colonizing oomycete pathogen Phytophthora parasitica. PloS One, 2011, 6: e28114

[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[11] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[12] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[13] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[14] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[15] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!