作物学报 ›› 2015, Vol. 41 ›› Issue (06): 872-880.doi: 10.3724/SP.J.1006.2015.00872
孙喜营1,2,崔磊2,3 孙 蕾2,孙艳玲2,邱丹1,2,邹景伟1,2,武小菲2,王晓鸣2,李洪杰2,*
SUN Xi-Ying1,2,CUI Lei2,3,SUN Lei2,SUN Yan-Ling2,QIU Dan1,2,ZOU Jing-Wei1,2,WU Xiao-Fei2,WANG Xiao-Ming2,LI Hong-Jie2,*
摘要:
在我国小麦主产区均有禾谷孢囊线虫(CCN, Heterodera spp.)发生。限于有效抗源的严重匮乏, 抗CCN育种研究一直难以规模化开展。Madsen是一个抗孢囊线虫的美国冬小麦品种, 但抽穗偏晚使其很难在育种上迅速利用。本研究利用中国小麦品种烟农21和济麦19与Madsen杂交和回交, 从BC1F4代中选育出稳定品系H3714和H4058。田间病圃和温室接种鉴定结果表明, 这2个品系对河南省H. avenae荥阳群体(致病型Ha43)和H. filipjevi许昌群体(致病型Hfc-1)的抗性显著优于烟农21和济麦19。在接种条件下, 两个品系表现成株期白粉病抗性, H4058苗期还可抗不同白粉菌菌株。2个品系的抽穗期与烟农21和济麦19相似, 明显早于Madsen。利用偏凸山羊草2NS染色体特异分子标记VENTRIUP-LN2及该染色体上Vrga1D基因特异分子标记Vlr2.6-3′-Vlr2.4-5′和VRGA-F11-VRGA-R5分析, 发现H3714和H4058含有偏凸山羊草2NS染色体片段, 且该染色体片段来自Madsen。根据Illumina iSelect 90K SNP分析结果, 两个品系的染色体构成存在差异。在检测到两个品系共有的4918个多态性SNP中, 2/3的SNP位点在2个姊妹系间表现相同, 另外1/3的SNP位点表现不同。本研究培育的抗禾谷孢囊线虫小麦新种质H3714和H4058可作为培育抗线虫小麦品种的抗源。
[1]Peng D L, Nicol J M, Li H M, Hou S Y, Li H X, Chen S L, Ma P, Li H L, Riley I T. Current knowledge of cereal cyst nematode (Heterodera avenae) on wheat in China. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 29–34[2]李惠霞, 柳永娥, 魏庄, 李敏全. 西藏和新疆自治区麦田禾谷孢囊线虫的检测. 见: 廖金铃, 彭德良, 段玉玺, 简恒, 李红梅(主编). 中国线虫学研究, 第四卷, 北京: 中国农业科学技术出版社, 2012. pp 164–165Li H X, Liu Y E, Wei Z, Li M Q. The detection of Heterodera avenae from the cereal field in autonomous region of Tibet and Xinjiang. In: Liao J L, Peng D L, Duan Y X, Jian H, Li H M, eds. Nematology Research in China, Vol. 4. Beijing: China Agricultural Science and Technology Press, 2012. pp 164–165 (in Chinese)[3]刘刚. 农业部种植业管理司提醒跨区收割可传带小麦孢囊线虫. 北京农业, 2009, (9): 42Liu G. The Ministry of Agriculture Planting Industry Management department reminds that crop harvesting across regions can spread cereal cyst nematode. Beijing Agric, 2009, (9): 42[4]Li H J, Cui L, Li H L, Wang X M, Murray T D, Conner R L, Wang L W, Gao X, Sun Y, Sun S C, Tang W H. Effective re-sources in wheat and Wheat-Thinopyrum derivatives for re-sistance to Heterodera filipjevi in China. Crop Sci, 2012, 52: 1209–1212[5]赵洪海, 杨远永, 彭德良. 山东省主要小麦品种对禾谷孢囊线虫抗性的初步评价. 山东农业科学, 2012, 44(2): 80–83Zhao H H, Yang Y Y, Peng D L. Preliminary evaluation on resistance of main wheat cultivars from Shandong province to cereal cyst nematode. Shandong Agric Sci, 2012, 44(2): 80–83 (in Chinese)[6]李秀花, 马娟, 高波, 王容燕, 陈书龙. 部分国内外小麦种质资源对燕麦孢囊线虫的抗病性. 麦类作物学报, 2013, 33: 1277–1283Li X H, Ma J, Gao B, Wang R Y, Chen S L. Resistance of wheat cultivars or germplasm lines to Heterodera avenae. J Triticeae Crops, 2013, 33: 1277–1283 (in Chinese with English abstract)[7]邢小萍, 袁虹霞, 孙君伟, 张洁, 孙炳剑, 李洪连. 河南省小麦主推品种对2种禾谷孢囊线虫的抗性及其评价方法. 作物学报, 2014, 40: 805–815Xing X P, Yuan H X, Sun J W, Zhang J, Sun B J, Li H L. Re-sistance to two species of cereal cyst nematode and evaluation methods in major wheat cultivars from Henan province, China. Acta Agron Sin, 2014, 40: 805–815 (in Chinese with English abstract)[8]刘炳良, 孙成刚, 王暄, 向桂林, 宋志强, 高菲菲, 李红梅. 小麦品种对禾谷孢囊线虫(Heterodera avenae)江苏沛县群体的抗性鉴定. 麦类作物学报, 2012, 32: 563–568Liu B L, Sun C G, Wang X, Xiang G L, Song Z Q, Gao F F, Li H M. Evaluation of the resistance of wheat cultivars to Peixian population of Heterodera avenae from Jiangsu province, China. J Triticeae Crops, 2012, 32: 563–568 (in Chinese with English abstract)[9]代君丽, 崔磊, 刘珂, 宗莹莹, 袁虹霞, 邢小萍, 李洪杰, 李洪连. 小麦品种太空6号对Heterodera avenae郑州群体的抗性遗传分析. 作物学报, 2013, 39: 642–648Dai J L, Cui L, Liu K, Zong Y Y, Yuan H X, Xing X P, Li H J, Li H L. Genetic analysis of common wheat cultivar Taikong 6 for resistance to Heterodera avenae Zhengzhou population. Acta Agron Sin, 2013, 39: 642–648 (in Chinese with English abstract)[10]宗莹莹, 代君丽, 袁虹霞, 邢小萍, 孙炳剑, 李洪连. 普通小麦品种中育6号对两种禾谷孢囊线虫的抗性遗传分析. 麦类作物学报, 2013, 33: 249–254Zong Y Y, Dai J L, Yuan H X, Xing X P, Sun B J, Li H L. Genetic analysis of resistance to cereal cyst nematode in common wheat variety Zhongyu 6. J Triticeae Crops, 2013, 33: 249–254 (in Chinese with English abstract)[11]袁虹霞, 张福霞, 张佳佳, 侯兴松, 李洪杰, 李洪连. CIMMYT小麦种质资源对菲利普孢囊线虫(Heterodera filipjevi)河南许昌群体的抗性. 作物学报, 2011, 37: 1956–1966Yuan H X, Zhang F X, Zhang J J, Hou X S, Li H J, Li H L. Resistance of CIMMYT wheat germplasm to Heterodera filipjevi Xuchang population from Henan province, China. Acta Agron Sin, 2011, 37: 1956–1966 (in Chinese with English abstract)[12]高秀, 崔磊, 李洪连, 王晓鸣, 唐文华, Conner R L, 林小虎, 李洪杰. 硬粒小麦品种Waskana和Waskowa对禾谷孢囊线虫(Heterodera filipjevi和H. avenae)的抗性. 作物学报, 2012, 38: 571–577Gao X, Cui L, Li H L, Wang X M, Tang W H, Conner R L, Lin X H, Li H J. Resistance of Triticum durum cultivars Waskana and Waskowa to cereal cyst nematode, Heterodera filipjevi and H. avenae. Acta Agron Sin, 2012, 38: 571–577 (in Chinese with English abstract)[13]武小菲, 李洪杰, 王晓鸣, 陈怀谷, 徐世昌, 刘太国. 28份人工合成小麦对禾谷孢囊线虫、纹枯病、条锈病和叶锈病的抗性. 植物遗传资源学报, 2013, 14: 1221–1226Wu X F, Li H J, Wang X M, Chen H G, Xu S C, Liu T G. Reactions of synthetic wheat to cereal cyst nematode, sharp eyespot, stripe rust, and leaf rust. J Plant Genet Resour, 2013, 14: 1221–1226 (in Chinese with English abstract)[14]张佳佳, 袁虹霞, 张瑞奇, 邢小萍, 代君丽, 牛吉山, 李洪连, 陈佩度. 普通小麦–簇毛麦种质对菲利普孢囊线虫的抗性分析. 作物学报, 2012, 38: 1969–1976Zhang J J, Yuan H X, Zhang R Q, Xing X P, Dai J L, Niu J S, Li H L, Chen P D. Analysis of resistance to Heterodera filipjevi in Triticum aestivum-Dasypyrum villosum germplasm. Acta Agron Sin, 2012, 38: 1969–1976 (in Chinese with English abstract)[15]Allan R E, Peterson Jr C J, Rubenthaler G L, Line R F, Roberts D E. Registration of Madsen wheat (Reg. No.746). Crop Sci, 1989, 29: 1575–1576[16]Helguera M, Khan I A, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci, 2003, 43: 1839–1847[17]Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787–796[18]Maia N. Obtention de bles tenders resistants au pietin-verse par croisements interspecifiques bles × Aegilops. CR Acad Agric (Fr.), 1967, 53: 149–154 (in French with English abstract)[19]Yuan H X, Sun J W, Yang W X, Xing X P, Wang Z Y, Riley I T, Li H L. New pathotypes of Heterodera avenae (cereal cyst nematode) from winter wheat in Zhengzhou, Henan, China. Australas Plant Pathol, 2010, 39: 107–111[20]Li H L, Yuan H X, Sun J W, Fu B, Nian G L, Hou X S, Xing X P, Sun B J. First record of the cereal cyst nematode Heterodera filipjevi in China. Plant Dis, 2010, 94: 1505[21]Nicol J M, Ogbonnaya F, Singh A K, Bishnoi S P, Kanwar R S, Li H L, Chen S L, Peng D L, Bolat N, ?ahin E, Elekcio?lu? H. Current global knowledge of the usability of cereal cyst nematode resistant bread wheat germplasm through international germplasm exchange and evaluation. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 149–153[22]李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测. 作物学报, 2011, 37: 943–954Li H J, Wang X M, Song F J, Wu C P, Wu X F, Zhang N, Zhou Y, Zhang X Y. Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin, 2011, 37: 943–954 (in Chinese with English abstract)[23]Seah S, Spielmeyer W, Jahier J, Sivasithamparam K, Lagudah E S. Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat. Mol Plant- Microbe Interact, 2000, 13: 334–341[24]Seah S, Bariana H, Jahier J, Sivasithamparam K, Lagudah E S. The introgressed segment carrying rust resistance genes Yr17, Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence. Theor Appl Genet, 2001, 102: 600–605[25]Fang T L, Campbell K G, Liu Z Y, Chen X M, Wan A M, Li S, Liu Z J, Cao S H, Chen Y H, Bowden R L, Carver B F, Yan L L. Stripe rust resistance in the wheat cultivar Jagger is due to Yr17 and a novel resistance gene. Crop Sci, 2011, 51: 2455–2465[26]van Berloo R. GGT 2.0: Versatile software for visualization and analysis of genetic data. J Hered, 2008, 99: 232–236[27]Bekal S, Jahier J, Rivoal R. Host responses of Triticeae to species of the cereal cyst nematode complex in relation to breeding resistant durum wheat. Fundam Appl Nematol, 1998, 21: 359–370[28]Bariana H S, McIntosh R A. Characterisation and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica, 1994, 76: 53–61[29]Jahier J, Abelard P, Tanguy M, Dedryver F, Rivoal R, Khatkar S, Bariana H S, Koebner R. The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar ‘VPM1’ carries the cereal cyst nematode resistance gene Cre5. Plant Breed, 2001, 120: 125–128[30]McIntosh R A, Wellings C R, Park R F. Wheat Rusts, an Atlas of Resistance Genes. CSIRO, Melbourne, Australia, 1995.[31]Takeuchi T, Munekata S, Suzuki T, Senda K, Horita H, Araki K, Asayama S, Sato M. Breeding wheat lines resistant to wheat yellow mosaic virus and localization of the resistance gene (YmMD) derived from wheat cultivar 'Madsen'. Breed Res, 2010, 12: 1–8[32]Williamson V M, Thomas V, Ferris H, Dubcovsky J. An Aegilops ventricosa translocation confers resistance against root-knot nematodes to common wheat. Crop Sci, 2013, 53: 1412–1418[33]Dyck P L, Lukow O M. The genetic analysis of two interspecific sources of leaf rust resistance and their effect on the quality of common wheat. Can J Plant Sci, 1988, 68: 633–639[34]Cane K, Sharp P J, Eagles H A, Eastwood R F, Hollamby G J, Kuchel H, Lu M Q, Martin P J. The effects on grain quality traits of a grain serpin protein and the VPM1 segment in southern Australian wheat breeding. Aust J Agric Res, 2008, 59: 883–890[35]Robert O, Abelard C, Dedryver F. Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Mol Breed, 1999, 5: 167–175[36]Ambrozková M, Dedryver F, Dumalasová V, Hanzalová A, Bartoš P. Determination of the cluster of wheat rust resistance genes Yr17, Lr37 and Sr38 by a molecular marker. Plant Prot Sci, 2002, 38: 41–45[37]Hanzalová, A, Sumíková T, Bartoš P. Determination of leaf rust resistance genes Lr10, Lr26 and Lr37 by molecular markers in wheat cultivars registered in the Czech Republic. Czech J Genet Plant Breed, 2009, 45: 79–84[38]李峰奇, 韩德俊, 魏国荣, 曾庆东, 康振生. 黄淮麦区小麦品种Lr37-Yr17-Sr38基因簇的分子检测. 西北农林科技大学学报(自然科学版), 2009, 37(3): 151–158Li F Q, Han D J, Wei G R, Zeng Q D, Kang Z S. Identification of Lr37-Yr17-Sr38 in wheat cultivars of Huanghuai wheat region using molecular markers. J Northwest A&F Univ (Nat Sci Edn), 2009, 37(3): 151–158 (in Chinese with English abstract)[39]Robert O, Dedryver F, Leconte M, Rolland B, de Vallavieille-Pope C. Combination of resistance tests and mo-lecular tests and molecular tests to postulate the yellow rust resistance gene Yr17 in bread wheat lines. Plant Breed, 2000, 119: 467–472[40]Wurschum T, Langer S M, Longin C F H, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif J C. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet, 2013, 126: 1477–1486[41]Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L, Anderson J A, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P L, Dubcovsky J, Morell M K, Sorrells M E, Hayden M J, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110: 8057–8062 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[6] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[9] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[10] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[11] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[12] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[13] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[14] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[15] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
|