作物学报 ›› 2015, Vol. 41 ›› Issue (07): 1098-1104.doi: 10.3724/SP.J.1006.2015.01098
邹俊林1,刘卫国1*,袁晋1,蒋涛2,叶素琴1,邓榆川1,杨晨雨1,罗玲1,杨文钰1
ZOU Jun-Lin1,LIU Wei-Guo1,*,YUAN Jin1,JIANG Tao2,YE Su-Qin1,DENG Yu-Chuan1,YANG Chen-Yu1,LUO Ling1,YANG Wen-Yu1,*
摘要:
为从茎秆强度的角度探索套作大豆苗期耐阴抗倒机制,对套作大豆苗期茎秆木质素合成与抗倒性的关系进行了研究。采用耐阴性不同的3个大豆品种(系),在大豆-玉米套作和大豆单作两种种植模式下,测定茎秆的木质素含量及其合成过程中的苯丙氨酸转氨酶(PAL)、4-香豆酸:CoA连接酶(4CL)、羟基肉桂醇脱氢酶(CAD)、过氧化物酶(POD)等关键酶活性以及茎秆抗折力和抗倒伏指数。结果表明,套作大豆苗期倒伏严重,茎秆抗折力、抗倒伏指数、木质素含量和相关酶活性均显著低于单作。不同大豆品种受套作阴蔽影响程度不同,强耐阴性大豆南豆12茎秆抗折力降低幅度最小,在套作环境下其茎秆抗折力、抗倒伏指数大,茎秆木质素含量高,PAL、4CL、CAD、POD活性强。相关分析表明,套作大豆苗期茎秆木质素含量与抗折力极显著正相关(r = 0.890,P < 0.01),与倒伏率极显著负相关(r = –0.889,P < 0.01),与4CL、CAD酶活性显著正相关。套作环境下,强耐阴性大豆苗期茎秆中较高的4CL、CAD活性是其维持高木质素含量的酶学基础,而高木质素含量有利于提高茎秆强度,进而增强其抗倒伏能力。
[1]杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰. 发展套作大豆, 振兴大豆产业. 大豆科学, 2008, 27: 1–7Yang W Y, Yong T W, Ren W J, Fan G Q, Mu J Y, Lu X L. Develop relay–planting soybean, revitalize soybean industry. Soybean Sci, 2008, 27: 1–7 (in Chinese with English abstract)[2]Liu W G, Zou J L, Zhang J, Yang F, Wan Y, Yang W Y. Evaluation of soybean (Glycine max) stem vining in maize-soybean relay strip intercropping system. Plant Prod Sci, 2015, 18: 69–75[3]王竹, 杨文钰, 伍晓燕, 吴其林. 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响. 应用生态学报, 2008, 19: 323–329Wang Z, Yang W Y, Wu X Y, Wu Q L. Effect of maize plant type and planting width on the early morphological characters and yield of interplanted soybean. Chin J Appl Ecol, 2008, 19: 323–329 (in Chinese with English abstract)[4]刘卫国, 蒋涛, 佘跃辉, 杨峰, 杨文钰. 大豆苗期茎秆对荫蔽胁迫响应的生理机制初探. 中国油料作物学报, 2011, 33: 141–146Liu W G, Jiang T, She Y H, Yang F, Yang W Y. Preliminary study on physiological response mechanism of soybean (Glycine max) stem to shade stress at seedling stag. Chin J Oil Crop Sci, 2011, 33: 141–146 (in Chinese with English abstract)[5]刘卫国, 宋颖, 邹俊林, 张云松, 梅林森, 蒋涛, 杨文钰. LED灯模拟作物间作套种群体内光环境的设计与应用. 农业工程学报, 2011, 27(8): 288–292Liu W G, Song Y, Zou J L, Zhang Y S, Mei L S, Jiang T, Yang W Y. Design and effect of LED simulated illumination environment on intercropping population. Transact CSAE, 27(8): 288–292 (in Chinese with English abstract)[6]梁莉, 郭玉明. 作物茎秆生物力学性质与形态特性相关性研究. 农业工程学报, 2008, 24(7): 1–6Liang L, Guo Y M. Correlation study of biomechanical properties and morphological characteristics of crop stalks. Trans CSAE, 24(7): 1–6 (in Chinese with English abstract)[7]Wang J, Zhu J M, Lin Q Q, Li X J, Teng N J, Li Z S, Li B, Zhang A M, Lin J X. Effects of stem structure and cell wall components on bending strength in wheat. Chin Sci Bull, 2006, 51: 815–823[8]罗茂春, 田翠婷, 李晓娟, 林金星. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27: 2346–2353Luo M C, Tian C T, Li X J, Lin J X. Relationship between morpho–anatomical traits together with chemical components and lodging resistance of stem in rice (Oryza sativa L.). Acta Bot Boreal–Occident Sin, 2007, 27: 2346–2353 (in Chinese with English abstract)[9]周蓉. 大豆抗倒伏性评价体系的建立及主要农艺性状QTL定位. 华中农业大学博士学位论文, 湖北武汉, 2009Zhou R. Evaluation of Lodging Resistance and QTL Mapping of Some Agronomic Traits in Soybean (Glycine max L.). PhD Dissertation of Huazhong Agricultural University, Wuhan, China, 2009 (in Chinese with English abstract)[10]李伟, 熊谨, 陈晓阳. 木质素代谢的生理意义及其遗传控制研究进展. 西北植物学报, 2003, 23: 675–681Li W, Xiong J, Chen X Y. Advances in the research of physiological significances and genetic regulation of lignin in metabolism. Acta Bot Boreal-Occident Sin, 2003, 23: 675–681 (in Chinese with English abstract)[11]马延华, 王庆祥. 玉米茎秆性状与抗倒伏关系研究进展. 作物杂志, 2012, (2): 10–15Ma Y H, Wang Q X. Advances of research on relationship between traits and lodging resistance of stem in corn. Crops, 2012, (2): 10–15 (in Chinese)[12]吴其林, 王竹, 杨文钰. 苗期遮荫对大豆茎秆形态和物质积累的影响. 大豆科学, 2007, 26: 868–872Wu Q L, Wang Z, Yang W Y. Seedling shading affects morphogenesis and substance accumulation of stem in soybean. Soybean Sci, 2007, 26: 868–872 (in Chinese with English abstract)[13]向达兵, 郭凯, 雷婷, 于晓波, 罗庆明, 杨文钰. 磷钾营养对套作大豆茎杆形态和抗倒性的影响. 中国油料作物学报, 2010, 32: 395–402Xiang D B, Guo K, Lei T, Yu X B, Luo Q M, Yang W Y. Effects of phosphorus and potassium on stem characteristics and lodging resistance of relay cropping soybean. Chin J Oil Crop Sci, 2010, 32: 395–402 (in Chinese with English abstract)[14]Tripathi S C, Sayre K D. Growth and morphology of wheat culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Res, 2003, 84: 271–290[15]刘唐兴, 官春云. 油菜倒伏指数和茎秆生化成分及农艺性状的灰色关联分析. 中国油料作物学报, 2008, 30: 152–156Liu T X, Guan C Y. Grey relational analysis between lodging index and biochemistry components of stem, agronomic characteristics in rapeseed (Brassica napus L). Chin J Oil Crop Sci, 2008, 30: 152–156 (in Chinese with English abstract)[16]Ookawa T, Ishihara K V. Difference of cell wall components affecting the ding stress of the culm in relating to lodging resistance in paddy rice. Jpn J Crop Sci, 1993, 62: 378–384[17]邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 60–61Qiu L J, Chang R Z. Descriptors and Date Standard for Soybean (Glycine spp.). Beijing: China Agriculture Press, 2006. pp 60–61 (in Chinese)[18]周蓉, 王贤智, 张晓娟, 沙爱华, 吴学军, 涂赣英, 邱德珍, 周新安. 大豆种质倒伏抗性评价方法研究. 大豆科学, 2007, 26: 485–489Zhou R, Wang X Z, Zhang X J, Sha A H, Wu X J, Tu G Y, Qiu D Z, Zhou X A. Evaluation methed of lodging resistance in soybean germplasm. Soybean Sci, 2007, 26: 485–489 (in Chinese with English abstract)[19]黄中文, 赵团结, 喻德跃, 陈受宜, 盖钧镒. 大豆抗倒伏性的评价指标及其QTL分析. 作物学报, 2008, 34: 605–611Huang Z W, Zhao T J, Yu D X, Chen S Y, Gai J Y. Lodging resistance indices and related QTLs in soybean. Acta Agron Sin, 2008, 34: 605–611 (in Chinese with English abstract)[20]Bhaskara-Reddy M V, Arul J, Angers P, Coutuer L. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improve seed quality. J Agric Food Chem, 1999, 47: 1208–1216[21]张志良, 瞿伟菁. 植物生理学实验指导(第3版). 北京: 高等教育出版社, 2003. pp 277–278Zhang Z L, Qu W J. Experimental Guide for Plant Physiology, 3nd Edn. Beijing: Higher Education Press, 2003. pp 277–278 (in Chinese)[22]Knobloch K H, Hahlbrock K. Isoenzymes of P-coumarate: CoA ligase from cell suspension cultures of Glycine max. Eur J Biochem, 1975, 52: 311–320[23]Morrison T A, Kessler J R, Hatfield R D, Buxton D R. Activity of two lignin biosynthesis enzymes dunng development of a maize internode. J Sci Food Agric, 1994, 65: 133–139[24]熊庆娥. 植物生理学实验教程. 成都: 四川科学技术出版社, 2008. pp 92–93Xiong Q E. Experimental Course for Plant Physiology. Chengdu: Sichuan Scientific and Technical Publishers, 2008. pp 92–93 (in Chinese)[25]周蓉, 王贤智, 陈海峰, 张晓娟, 单志慧, 吴学军, 蔡淑平, 邱德珍, 周新安, 吴江生. 大豆倒伏性及其相关性状的QTL分析. 作物学报, 2009, 35: 57–65Zhou R, Wang X Z, Chen H F, Zhang X J, Shan Z H, Wu X J, Cai S P, Qiu D Z, Zhou X A, Wu J S. QTL analysis of lodging and related traits in soybean. Acta Agron Sin, 2009, 35: 57–65 (in Chinese with English abstract)[26]Baucher M, Monties B, Van Montagu M, Boerjan W. Biosynthesis and genetic engineer in lignin. Critical Rev Plant Sci, 1998, 17: 125–197[27]Berry P M, Spink J, Sterling M, Picker A A. Methods for rapidly measuring the lodging resistance of wheat cultivars. J Agron Crop Sci, 2003, 189: 390–401[28]Boerjanl W, Ralph J, Baucher M. Lignin biosynthesis. Plant Biol, 2003, 54: 519–546[29]王海建, 陈华保, 蒋春先, 马方芳, 李庆, 杨文钰, 杨群芳, 徐翔. 大豆蚜胁迫对不同抗蚜性大豆材料生理指标的影响. 大豆科学, 2013, 32: 276–278Wang H J, Chen H B, Jiang C X, Ma F F, Li Q, Yang W Y, Yang Q F, Xu X. Effects of Aphis Glycines Matsumura stress on physiological index of soybean varieties with different aphid resistance, Soybean Sci, 2013, 32: 276–278 (in Chinese with English abstract)[30]闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群. 套作遮荫条件下烯效唑对大豆壮苗机理的研究. 中国油料作物学报, 2011, 33: 259–264Yan Y H, Yang W Y, Zhang X Q, Chen X L, Chen Z Q. Improve soybean seedling growth by uniconazole under shading by corn in relay strip intercropping system. Chin J Oil Crop Sci, 2011, 33: 259–264 (in Chinese with English abstract) |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|