欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (01): 70-81.

• 耕作栽培·生理生化 • 上一篇    下一篇

三种禾谷类作物强、弱势粒淀粉粒形态与粒度分布的比较

徐云姬,李银银,钱希旸,王志琴,杨建昌*   

  1. 扬州大学江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心,江苏扬州225009
  • 收稿日期:2015-05-31 修回日期:2015-09-06 出版日期:2016-01-12 网络出版日期:2015-10-08
  • 通讯作者: 杨建昌,E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317
  • 基金资助:

    本研究由国家自然科学基金项目(31271641, 31471438, 31461143015),中央级科研院所基本科研业务费专项(农业)(201103003, 201203079), 江苏省农业三新工程项目(SXGC[2014]313)和江苏高校优势学科建设工程资助项目(PAPD)专项经费资助。

Comparison of Starch Granule Morphology and Size Distribution in Superior and Inferior Grains of Three Cereal Crops

XU Yun-Ji,LI Yin-Yin,QIAN Xi-Yang,WANG Zhi-Qin,YANG Jian-Chang*   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
  • Received:2015-05-31 Revised:2015-09-06 Published:2016-01-12 Published online:2015-10-08
  • Contact: 杨建昌,E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317
  • Supported by:

    The research was supported by the National Natural Science Foundation of China (31271641, 31471438, 31461143015), China National Public Welfare Industry (Agriculture) Plan (201103003, 201203079), Jiangsu “Three-innovation” Agricultural Project (SXG2014313), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

摘要:

本研究以水稻品种武运粳24和扬两优6号、小麦品种扬麦16和宁麦13及玉米品种登海11和农乐988为试验材料,分别提取其成熟期强、弱势粒的淀粉粒,观察比较不同作物及其强、弱势粒间淀粉粒形态和淀粉粒数量、体积和表面积分布特性。结果表明,3种禾谷类作物间淀粉粒形态大小差异明显,粒径表现为玉米>小麦>水稻。水稻淀粉粒呈有棱角的无规则状,小麦淀粉粒呈透镜体状或球体状,玉米淀粉粒呈椭球体状、多面体状或圆球体状。水稻和玉米淀粉粒数量、体积和表面积分别成单峰、三峰和双峰分布;小麦淀粉粒数量呈单峰分布,体积呈微弱的四峰分布,表面积呈三峰分布。水稻、小麦和玉米淀粉粒按各自粒径不同人为划分为小淀粉粒、中淀粉粒和大淀粉粒,分界线分别为1.5 μm20.0 μm5.0 μm50.0 μm4.0 μm50.0 μm3种作物籽粒淀粉粒的总体积主要决定于中淀粉粒体积。3种作物的强、弱势粒间小淀粉粒粒度分布比例及中淀粉粒所占数量比例没有明显差异,但各作物强势粒的中淀粉粒所占的体积和表面积比例均显著高于弱势粒,大淀粉粒的分布比例低于弱势粒。强、弱势粒的中淀粉粒所占体积比例与其淀粉积累量和粒重的高低变化趋势一致。表明淀粉粒体积是决定粒重的一个重要因素,增加弱势粒的中淀粉粒体积或减小大淀粉粒体积可望增加其粒重。

关键词: 淀粉粒, 形态粒度分布, 强势粒, 弱势粒, 水稻, 小麦, 玉米

Abstract:

Using two rice cultivars, two wheat cultivars, and two maize cultivars, we extracted starch granules to observe the morphological characteristics and to compare the differences in the starch granule number, volume and surface area distributions among the three crops and between superior and inferior grains of each cultivar. The results showed that significant differences were observed in starch granule morphology and size among the three crops. The diameter of starch granule showed an order of maize > wheat > rice. Starch granules extracted in rice showed an irregular shape, the starch granules in wheat were lenticular-shaped and spherical-shaped. The starch granules in maize grain were mainly polyhedral or irregular and spherical in shape. Distributions of starch granule number, volume and surface area were changed in a typical unimodal-peak curve, a triple-peak curve and a typical bimodal-peak curve, respectively, in grains of rice and maize. Distributions of starch granule number, volume and surface area in wheat grains displayed a typical unimodal-peak curve, a four-peak curve and a triple-peak curve, respectively. According to starch granule diameters, all the starch granules were classified into small, medium, and large granules in this study. The thresholds for separating the starch granules were 1.5 μm and 20.0 μm, 5.0 μm and 50.0 μm, 4.0 μm and 50.0 μm, respectively, in rice, wheat and maize. The total volume of starch granules in grains of the three cereal crops was mainly determined by the volume of medium starch granules. No significant difference was observed in the proportions of small starch granule size and medium starch granule number between superior and inferior grains of the three cereal crops. But the volume and surface area of medium starch granules were larger in superior grains than in inferior ones. The percentage of large starch granules was greater in the inferior than in the superior. Changes in the volume of medium starch granules in both superior and inferior grains were consistent with those in starch accumulation and grain weight. The results suggest that the starch granule volume is an important factor determining grain weight. Increasing the volume of medium starch granules or reducing the volume of large starch granules would increase the weight of inferior grains.

Key words: Starch granule, Morphology, Size distribution, Superior grains, Inferior grains, Rice, Wheat, Maize

[1]Yang J, Cao Y, Zhang H, Liu L, Zhang J. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta, 2008, 228: 137–149

[2]Yang W B, Yin Y P, Li Y, Cai T, Ni Y L, Peng D L, Wang Z L. Interactions between polyamines and ethylene during grain filling in wheat grown under water deficit conditions. Plant Growth Regul, 2014, 72: 189–201

[3]徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013, 39: 1452–1461

Xu Y J, Gu D J, Zhang B B, Zhang H, Wang Z Q, Yang J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agron Sin, 2013, 39: 1452–1461 (in Chinese with English abstract)

[4]Jiang D, Cao W X, Dai T B, Jing Q. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant Growth Regul, 2003, 41: 247–257

[5]Li W, Yan S, Wang Z. Effect of spikelet position on starch proportion, granule distribution and related enzymes activity in wheat grain. Plant Soil Environ, 2013, 59: 568–574

[6]申丽霞, 王璞, 张红芳, 易镇邪. 施氮对夏玉米不同部位籽粒灌浆的影响. 作物学报, 2005, 31: 532–534

Shen L X, Wang P, Zhang H F, Yi Z X. Effect of nitrogen supply on grain filling at different ear position in summer maize. Acta Agron Sin, 2005, 31: 532–534 (in Chinese with English abstract)

[7]Paul C. The structure of starch. Nature, 1997, 389: 338–339

[8]Tester R F, Karkalas J, Qi X. Starch structure and digestibility enzyme-substrate relationship. World’s Poult Sci J, 2004, 60: 186−195

[9]Vermeylen R, Goderis B, Reynaers H, Delcour J A. Gelatinisation related structural aspects of small and large wheat starch granules. Carbohydr Polymers, 2005, 62: 170–181

[10]Kim H S, Huber K C. Channels within soft wheat starch A- and B-type granules. J Cereal Sci, 2008, 48: 159–172

[11]Peng M, Gao M, Abdel-Aal E S M, Hucl P, Chibbar R N. Separation and characterization of A- and B-type starch granules in wheat endosperm. Cereal Chem, 1999, 76: 375–379

[12]Bechtel D B, Zayas I, Kaleikau L, Pomeranz Y. Size-distribution of wheat starch granules during endosperm development. Cereal Chem, 1990, 67: 59−63

[13]张丽, 张吉旺, 刘鹏, 董树亭. 不同淀粉含量玉米籽粒淀粉粒度的分布特性. 中国农业科学, 2011, 44: 1596–1602

Zhang L, Zhang J W, Liu P, Dong S T. Starch granule size distribution in grains of maize with different starch contents. Sci Agric Sin, 2011, 44: 1596–1602 (in Chinese with English abstract)

[14]陆大雷, 郭换粉, 董策, 陆卫平. 普通、甜、糯玉米果穗不同部位籽粒淀粉理化特性和颗粒分布差异. 作物学报, 2011, 37: 331–338

Lu D L, Guo H F, Dong C, Lu W P. Starch physicochemical characteristics and granule size distribution at apical, medium and basal ear positions in normal, sweet, and waxy maize. Acta Agron Sin, 2011, 37: 331–338 (in Chinese with English abstract)

[15]蔡瑞国, 张敏, 朱桓, 武宝悦, 李彦生, 王振林. 糯小麦籽粒淀粉粒度分布特征. 麦类作物学报, 2010, 30: 254–258

    Cai R G, Zhang M, Zhu H, Wu B Y, Li Y S, Wang Z L. Starch granule size distribution in grains of waxy wheat. J Triticeae Crops, 2010, 30: 254–258 (in Chinese with English abstract)

[16]崔丽娜,董树亭. 2种玉米籽粒淀粉粒分布的比较. 中国粮油学报, 2013, 28(12): 29–32

    Cui L N, Dong S T. Comparison of grain starch granule distribution of two kinds of corn kernel(Zea mays L.). J Chin Cereals & Oils Assoc, 2013, 28(12): 29–32 (in Chinese with English abstract)

[17]戴忠民, 尹燕枰, 郑世英, 蔡瑞国, 顾锋, 闫素辉, 李文阳, 王振林. 不同供水条件对小麦强、弱势籽粒中淀粉粒度分布的影响. 生态学报, 2009, 29: 6534-6543

Dai Z M, Yin Y P, Zheng S Y, Cai R G, Gu F, Yan S H, Li W Y, Wang Z L. Effect of water regime on starch granule size distribution in superior and inferior grains of wheat. Acta Ecol Sin, 2009, 29: 6534–6543 (in Chinese with English abstract)

[18]崔丽娜, 董树亭. 氮肥对玉米子粒淀粉粒形态及分布的影响. 玉米科学, 2013, 21: 64–68

Cui L N, Dong S T. Effects of application nitrogen on maize(Zea mays L.) grain starch morphogenesis and size distribution. J Maize Sci, 2013, 21: 64–68 (in Chinese with English abstract)

[19]Peng D L, Cai T, Yin Y P, Yang W B, Ni Y L, Yang D Q, Wang Z L. Exogenous application of abscisic acid or gibberellin acid has different effects on starch granule size distribution in grains of wheat. J Integr Agric, 2013, 12: 1551–1559

[20]何照范. 粮油籽粒品质及其分析技术. 北京: 农业出版社, 1985

He Z F. Grain Quality and Its Analysis Technology. Beijing: Agriculture Press, 1985 (in Chinese)

[21]Peng M, Gao M, Abdel-Aal E S M, Hucl P, Chibbar R N. Separation and characterization of A- and B-type starch granules in wheat endosperm. Cereal Chem, 1999, 76: 375–379

[22]Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J, White P J. Structure and function of starch from advanced generations of new corn lines. Carbohydr Polymers, 2003, 54: 305–319

[23]Shapter F M, Henry R J, Lee L S. Endosperm and starch granule morphology in wild cereal relatives. Plant Genet Resour Characterization and Utilization, 2008, 6: 85–97

[24]Wei C X, Qin F L, Zhu L J, Zhou W D, Chen Y F, Wang Y P, Gu M H, Liu Q Q. Microstructure and ultra-structure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem, 2010, 58: 1224–1232

[25]Yu X R, Zhou L, Zhang J, Yu H, Xiong F, Wang Z. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm. J Sci Food Agric, 2015, 95: 148–157

[26]Cai C H, Lin L S, Man J M, Zhao L X, Wang Z F, Wei C X. Different structural properties of high-amylose maize starch fractions varying in granule size. J Agric Food Chem, 2014, 62: 11711–11721

[27]Dhital S, Butardo V M, Jobling S A, Gidley M J. Rice starch granule amylolysis-differentiating effects of particle size, morphology, thermal properties and crystalline polymorph. Carbohydr Polymers, 2015, 115: 305–316

[28]戴忠民, 王振林, 张敏, 李文阳, 闫素辉, 蔡瑞国, 尹燕枰. 不同品质类型小麦籽粒淀粉粒度的分布特征. 作物学报, 2008, 34: 465–470

    Dai Z M, Wang Z L, Zhang M, Li W Y, Yan S H, Cai R G, Yin Y P. Starch granule size distribution in grains of strong and weak gluten wheat cultivars. Acta Agron Sin, 2008, 34: 465–470 (in Chinese with English abstract)

[29]蔡瑞国, 尹燕枰, 赵发茂, 张敏, 张体彬, 梁太波, 顾锋, 戴忠民, 王振林. 强筋小麦胚乳淀粉粒度分布特征及其对弱光的响应. 中国农业科学, 2008, 41: 1308–1316

    Cai R G, Yin Y P, Zhao F M, Zhang M, Zhang T B, Liang T B, Gu F, Dai Z M, Wang Z L. Size distribution of starch granules in strong-gluten wheat endosperm under low light environment. Sci Agric Sin, 2008, 41: 1308–1316 (in Chinese with English abstract)

[30]余静, 冉从福, 李学军, 邵慧, 李立群. 陕糯1号与非糯小麦西农1330胚乳发育及淀粉形态、粒径分析. 中国农业科学, 2014, 47: 4405–4416

    Yu J, Ran C F, Li X J, Shao H, Li L Q. Study on endosperm development and morphological features of starch granules in waxy wheat Shannuo 1 and non-waxy wheat Xinong 1330. Sci Agric Sin, 2014, 47: 4405–4416 (in Chinese with English abstract)

[31]石德杨, 张海艳, 董树亭. 补充灌溉和施氮对玉米籽粒淀粉粒粒度分布的影响. 中国农业科学, 2014, 47: 633–643

    Shi D Y, Zhang H Y, Dong S T. Effects of supplemental irrigation and nitrogen application on starch granule size distribution of maize grain. Sci Agric Sin, 2014, 47: 633–643 (in Chinese with English abstract)

[32]崔丽娜, 张红, 孟佳佳, 石德杨, 董树亭. 不同胚乳类型玉米籽粒淀粉粒的粒度分布特征. 作物学报, 2012, 38: 1723–1727

Cui L N, Zhang H, Meng J J, Shi D Y, Dong S T. Starch granule size distribution in maize kernel with different endosperm types. Acta Agron Sin, 2012, 38: 1723–1727 (in Chinese with English abstract)

[33]Zhang C H, Jiang D, Liu F L, Cai J, Dai T B, Cao W X. Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling. J Cereal Sci, 2010, 51: 226–233

[34]张蕊, 丁艳锋, 李刚华, 王强盛, 刘正辉, 王绍华. 水稻强弱势粒间淀粉粒和蛋白体积累的差异. 南京农业大学学报, 2014, 37(1): 15–20

Zhang R, Ding Y F, Li G H, Wang Q S, Liu Z H, Wang S H. Variation of starch granule and protein bodies in endosperm from superior and inferior grains of japonica rice. J Nanjing Agric Univ, 2014, 37(1): 15–20 (in Chinese with English abstract)

[35]谭秀山, 毕建杰, 王金花, 叶宝兴. 冬小麦不同穗位籽粒淀粉粒差异及其与粒重的相关性. 作物学报, 2012, 38: 1920–1929

   Tan X S, Bi J J, Wang J H, Ye B X. Differences of starch granules in grains from different spikelet positions and their correlation with grain weight in winter wheat. Acta Agron Sin, 2012, 38: 1920–1929 (in Chinese with English abstract)

[36]Peng M, Gao M, Baga M, Hucl P, Chibbar R N. Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm. Plant Physiol, 2000, 124: 265–272

[37]伊祖涛, 张海艳. 糯玉米胚乳淀粉粒粒度分布形成的酶学机理. 植物生理学报, 2015, 51: 88–92

Yi Z T, Zhang H Y. Enzyme mechanism of starch granule size distribution formation in waxy corn endosperm. Acta Phytophysiol Sin, 2015, 51: 88–92 (in Chinese with English abstract)

[38]McMaugh S J, Thistleton J L, Anschaw E, Luo J X, Konik-Rose C, Wang H, Huang M, Larroque O, Regina A, Jobling S A, Morell M K, Li Z Y. Suppression of starch synthase I expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm. J Exp Bot, 2014, 65: 2189–2201

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[5] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[6] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[7] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[8] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[9] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[10] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[11] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[12] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[13] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[14] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[15] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!