欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (02): 180-189.doi: 10.3724/SP.J.1006.2016.00180

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

青稞遗传多样性及其农艺性状与SSR标记的关联分析

孟亚雄1,2,孟祎林1,2,汪军成1,2,司二静1,2,张海娟1,2,任盼荣1,2,马小乐1,2,李葆春1,3, 杨轲1,2,王化俊1,2*   

  1. 1甘肃省干旱生境作物学重点实验室 / 甘肃省作物遗传改良与种质创新重点实验室,甘肃兰州730070;2甘肃农业大学农学院,甘肃兰州 730070;
    3甘肃农业大学生命科学技术院,甘肃兰州 730070
  • 收稿日期:2015-07-03 修回日期:2015-11-20 出版日期:2016-02-12 网络出版日期:2015-12-07
  • 通讯作者: 王化俊, E-mail: whuajun@yahoo.com, Tel: 13809315256
  • 基金资助:

    本研究由国家自然科学基金项目(31460347),甘肃省财政厅科研业务费(035-041047)和国家现代农业产业技术体系建设专项(CARS-05)资助。

Genetic Diversity and Association Analysis of Agronomic Characteristics with SSR Markers in Hulless Barley

MENG Ya-Xiong1,2,MENG Yi-Lin1,2,WANG Jun-Cheng1,2,SI Er-Jing1,2,ZHANG Hai-Juan1,2,REN Pan-Rong1,2,MA Xiao-Le1,2,LI Bao-Chun1,3,YANG Ke1,2,WANG Hua-Jun1,2,*   

  1. 1 Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, China; 2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; 3College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
  • Received:2015-07-03 Revised:2015-11-20 Published:2016-02-12 Published online:2015-12-07
  • Contact: 王化俊, E-mail: whuajun@yahoo.com, Tel: 13809315256
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31460347), Gansu Provincial Department of Finance Research Operating Expenses (035-041047), and the Special Program of Modern Agro-industry Technology System (CARS-05).

摘要:

利用92个SSR标记对108份青稞亲本材料进行多态性扫描,分析其遗传多样性,旨在寻找与农艺性状相关联的分子标记,为青稞杂交组合的配制及分子标记辅助育种提供依据。挑选48个多态性标记进行群体遗传结构分析,在此基础上采用Tassel 2.1 GLM (general linear model)和MLM (mixed linear model)方法进行标记与农艺性状的关联分析。共检测出156个等位变异,每个位点2~6个等位变异。供试群体的Shannon指数为0.6727~1.1368,材料间遗传相似系数为0.2250~1.0000,平均0.7585。通过群体遗传结构分析将供试材料划分成4个亚群。以GLM分析,发现12个与株高、穗长、穗粒数和分蘖数相关联的标记,对表型变异的解释率分别为11.5%~17.6%、19.4%~45.4%、15.4%~22.1%和29.2%;以MLM分析,发现8个与株高、分蘖数和小穗数相关的标记,各标记对表型变异的解释率分别为31.7%~49.8%、28.1%~37.2%、22.7%~32.7%。关联标记分布在基因组全部6个连锁群上。

关键词: 青稞, SSR, 遗传多样性, 群体遗传结构, 关联分析

Abstract:

The objectives of this study were to find molecular markers associated with yield-related traits and guide parental combination in molecular marker-assisted breeding and hybrid breeding of hulless barley (Hordeum vulgare L. var. nudum HK. f.). A natural hulless barley population composed of 108 parental varieties/lines was screened with 92 SSR markers, in which 48 markers were polymorphic. Population structure was analyzed based on the polymorphic SSR data and association between markers and five agronomic traits were performed in TASSEL GLM (general linear model) and MLM (mixed linear model) programs. A total of 156 alleles were detected in the 108 varieties/lines with 2–6 alleles per locus. The Shannon’s index of the population ranged from 0.6727 to 1.1368 and the genetic similarity between varieties ranged from 0.2250 to 1.0000, with the mean of 0.7585. Structure analysis revealed four genetic subpopulations for the entire materials tested. Based on GLM analysis, 12 SSR markers were found to be associated with plant height, spike length, grain number per spike and tiller number, with phenotypic contributions of 11.5%–17.6%, 19.4%–45.4%, 15.4%–22.1% and 29.2%, respectively. Based on MLM analysis, 8 SSR markers were associated with plant height, awn length, and spikelet compactness, with the phenotypic contributions of 31.71%–49.88%, 28.1%–37.2%, and 22.7%–32.7%, respectively. These associated markers were distributed on 6 chromosomes of the barley genome.

Key words: Hulless barley, SSR, Genetic diversity, Population structure, Association analysis

[1]孟凡磊, 强小林, 佘奎军, 唐亚伟, 胡银岗. 西藏主要农区青稞品种的遗传多样性分析. 作物学报, 2007, 33: 1910–1914



Meng F L, Qiang X L, She K J, Tang Y W, Hu Y G. Genetic diversity analysis among hulless barley varieties from the major agricultural areas of Tibet. Acta Agron Sin, 2007, 33: 1910–1914 (in Chinese with English abstract)



[2]Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1066



[3]Bhagwat A A, Cregan P B, Akkaya M S. Length polymorphisms of simple sequencerepeat DNA in soybean. Genetics, 1992, 132: 1131–1139



[4]Maroof M S, Biyashev R M, Yang G P, Zhang Q, Allard R W. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA, 1994, 91: 5466–5470



[5]Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats. Theor Appl Genet, 1994, 88: 1–6



[6]赖勇, 王鹏喜, 范贵强, 司二静, 王晋, 杨轲, 王化俊. 大麦SSR标记遗传多样性及其与农艺性状关联分析. 中国农业科学, 2012, 46: 233–242



Lai Y, Wang P X, Fan G Q, Si E J, Wang J, Yang K, Wang H J. Genetic diversity and association analysis using SSR markers in barley. Sci Agric Sin, 2013, 46: 233–242 (in Chinese with English abstract)



[7]Maccaferri M, Sanguineti M C, Noli E, Tuberosa R. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271–290



[8]Liu S B, Yang X P, Zhang D D, Bai G H, Chao S M, Bockus W. Genome-wide association analysis identified SNPs closely linked to a gene resistant to Soil-borne wheat mosaic virus. Theor Appl Genet, 2014, 127: 1039–1047



[9]Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433–2437



[10]Kumar B, Abdel-Ghani A H, Pace J, Reyes-Matamoros J, Hochholdinger F, Lübberstedt T. Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Sci, 2014, 224: 9–19



[11]Wen W W, Li D, Li X, Gao Y Q, Li W Q, Li H H, Liu J, Liu H J, Chen W, Luo J. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun, 2014, 5: 34–38



[12]Eizenga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci, 2006, 46: 1870–1878



[13]Yonemaru J, Mizobuchi R, Kato H, Yamamoto T, Yamamoto E, Matasubara K, Hirabayashi H, Takeuchi Y, Tsunematsu H, Ishii T. Genomic regions involved in yield potential detected by genome-wide association analysis in Japanese high-yielding rice cultivars. BMC Genomics, 2014, 15: 346



[14]D'hoop B B, Keizer P L, Paulo M J, Visser R G, van Eeuwijk F A,van Eck H J. Identification of agronomically important QTL in tetraploid potato cultivars using a marker-trait association analysis. Theor Appl Genet, 2014, 127: 731–748



[15]Wu D Z, Qiu L L, Xu L, Ye L Z, Chen M X, Sun D F, Chen Z H, Zhang H T, Jin X L, Dai F, Zhang G P. Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PloS One, 2011, 6: e22938



[16]Brantestam A K, Bothmer R, Dayteg C, Rashal I, Tuvesson S, Weibull J. Genetic diversity changes and relationships in spring barley (Hordeum vulgare L.) germplasm of Nordic and Baltic areas as shown by SSR markers. Genet Resour Crop Evol, 2007, 54: 749–758



[17]Sun D F, Ren W B, Sun G L, Peng J H. Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley (Hordeum vulgare L.) germplasm. Euphytica, 2011, 178: 31–43



[18]Kraakman A W, Martnez F, Mussiraliev B, Eeuwijk F A, Niks R E. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed, 2006, 17: 41–58



[19]Ivandic V, Hackett C A, Nevo E, Keith R, Thomas W T B, Forster B P. Analysis of simple sequence repeats (SSRs) in wild barley from the fertile crescent: associations with ecology, geography and flowering time. Plant Mol Biol, 2002, 48: 511–527



[20]Ivandic V, Thomas W T B, Nevo E, Zhang Z, Forster B P. Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed, 2003, 122: 300–304



[21]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127



[22]Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997, 15: 8–15



[23]Earl, D. A. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4:359–361



[24]潘志芬, 邹弈星, 邓光兵, 翟旭光, 吴芳, 余懋群. 青藏高原栽培青稞SSR标记遗传多样性研究. 中山大学学报(自然科学版), 2007, 46: 82–86



Pan Z F,Zou Y X,Deng G B,Zhai X G, Wu F, Yu M Q. Genetic diversity of SSR Markers in cultivated hulless barley from Qinghai-Tibet plateau in China. Acta Sci Nat Univ Sunyatseni, 2007, 46: 82–86 (in Chinese with English abstract)



[25]杨平, 刘仙俊, 刘新春, 李俊, 王希文, 何守朴, 冯宗云. 利用SRAP标记研究四川高原青稞育成品种的遗传多样性. 遗传, 2008, 30: 115–122 



Yang P, Liu X J, Liu X C, Li J, Wang X W, He S P, Feng Z Y. Genetic diversity analysis of the developed Qingke (hulless barley) varieties from the plateau regions of Sichuan Province in China revealed by SRAP markers. Hereditas (Beijing), 2008, 30: 115–122 (in Chinese with English abstract)



[26] Harris B P, Stokesbury K E. The spatial structure of local surficial sediment characteristics on Georges Bank, USA. Continental Shelf Res, 2010, 30: 1840–1853



[27]Wang M L, Zhu C S, Barkley N A, Chen Z B, Erpelding J E, Murray S C, Tuinstra M R, Tesso T, Pederson G A, Yu J M. Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theor Appl Genet, 2009, 120: 13–23



[28] Kline J B, Moore D J, Clevenger C V. Activation and association of the Tec tyrosine kinase with the human prolactin receptor: mapping of a Tec/Vav-receptor binding site. Mol Endocrinol, 2001, 15: 832–841



[29]武玉国, 吴承来, 秦保平, 王振林, 黄玮, 杨敏, 尹燕枰. 黄淮冬麦区175个小麦品种的遗传多样性及SSR标记与株高和产量相关性状的关联分析. 作物学报, 2012, 38: 1018–1028



Wu Y G, Wu C L, Qin B P, Wang Z L, Huang W, Yang M, Yin Y P. Diversity of 175 wheat varieties from Yellow and Huai River Valleys facultative wheat zone and association of SSR markers with plant height and yield related traits. Acta Agron Sin, 2012, 38: 1018–1028 (in Chinese with English abstract)



[30]Hansen M, Kraft T, Ganestam S, Sall T, Nilsson N O. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res, 2001, 77: 61–66



[31]Cockram J, White Jon, Leigh F J, Lea V J, Chiapparino E, Laurie D A, Mackay I J, Powell W, O'Sullivan D M. Association mapping of partitioning loci in barley. BMC Genet, 2008, 9: 16



[32]Marquez-Cedillo L A, Hayes P M, Kleinhofs A, Legge W G,Rossnagel B G, Sato K, Ullrich S E, Wesenberg D M. QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet, 2001, 103: 625–637



[33]Teulat B, Borries C, This D. New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet, 2001, 103: 161–170



[34]Korff M, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet, 2006, 112: 1221–1231



[35] 司二静, 张宇, 汪军成, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊. 大麦农艺性状与SSR标记的关联分析. 作物学报, 2015, 41: 1064–1072



Si E J, Zhang Y, Wang J C, Meng Y X, Li B C, Ma X L, Shang X W, Wang H J. Association analysis between SSR marker and agronomic traits in barley. Acta Agron Sin, 2015, 41: 1064–1072 (in Chinese with English abstract)



[36] Wang J, Yang J, McNeil D L, Zhou M. Identification and molecular mapping of a dwarfing gene in barley (Hordeum vulgare L.) and its correlation with other agronomic traits. Euphytica, 2010, 175: 331–342

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[6] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[7] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[8] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[9] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[10] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[11] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[12] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[13] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[14] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[15] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!