欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (06): 813-819.doi: 10.3724/SP.J.1006.2016.00813

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻颖壳退化突变体degenerated hull 3 (dh3)的表型分析与基因定位

龙珏臣,庄慧,陈欢,汪玲,沈亚林,曾晓琴,崔馨允,桑贤春,何光华,李云峰*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市重点实验室,重庆 400716
  • 收稿日期:2015-12-09 修回日期:2016-03-14 出版日期:2016-06-12 网络出版日期:2016-03-21
  • 通讯作者: 李云峰, E-mail: liyf1980@swu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31271304),重庆市自然科学重点项目(cstc2012jjB80005)和中央高校基本科研业务费(XDJK2012A001)资助。

Phenotypic Analysis and Gene Mapping of degenerated hull 3 (dh3) Mutant in Rice (Oryza sativa L.)

LONG Jue-Chen,ZHUANG Hui,CHEN Huan,WANG Ling,SHEN Ya-Lin,ZENG Xiao-Qin,CUI Xin-Yun,SANG Xian-Chun,HE Guang-Hua,LI Yun-Feng*   

  1. Rice Research Institute, Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400716, China?
  • Received:2015-12-09 Revised:2016-03-14 Published:2016-06-12 Published online:2016-03-21
  • Contact: 李云峰, E-mail: liyf1980@swu.edu.cn
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (31271304), Natural Science Foundation project of CQ (CSTC2012JJB80005), and the Fundamental Research Funds for the Central Universities (XDJK2012A001).

摘要:

水稻(Oryza sativaL.)花器官的发育直接影响其产量和品质。本研究报道了一个水稻颖壳退化突变体,来源于恢复系缙恢10号的ethyl methane sulfonate (EMS)诱变群体,命名为degenerated hull 3 (dh3)。该突变体表现为内外稃退化变窄,且不能正常闭合。在一些突变严重的小花中,外稃甚至退化成芒状,内稃边缘和浆片退化变窄且融合。遗传分析表明该性状受1对隐性基因调控。利用不育系西农1A与dh3杂交构建的356株F2突变群体,将DH3基因精细定位在第12染色体的SSR标记RM27706和RM27709之间,物理距离为44.72 kb,该区段内未见已知功能基因的报道。本研究的结果为以后DH3基因的图位克隆与功能分析打下基础。

关键词: 水稻, 颖壳退化, 表型分析, 基因定位

Abstract:

The floral organ development directly influences the yield and quality of rice. In this study, we reported a mutant degenerated hull 3 (dh3), derived from ethylmethane sulfonate (EMS)-treated Jinhui10 (Oryza sativa L. ssp. indica). The manifestation of dh3 mutant was degradation and narrowing in lemma and palea, losting the ability of close-up. In some seriously mutated florets, the lemma even degenerated in an awn-like shape, the margin region of palea and lodicules became narrow, even fused. Genetic analysis indicated that the dh3 character is controlled by a recessive gene. By using 356 F2 mutants derived from a cross between sterile line Xinong 1A and dh3, DH3 was mapped between SSR markers RM27706 and RM27709 on chromosome 12 in rice, with a physical distance of 44.72 kb. There is no report of known functional gene in this zone. The results will shed light on the future clone and function analysis of DH3 gene.

Key words: Rice (Oryza sativa), degenerated hull, Phenotypic analysis, Gene mapping

[1] Bowman J L, Smyth D R, Meyerowitz E M. Genetic interactions among floral homeotic genes of Arabidopsis. Development, 1991, 112: 1–20
[2] Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353: 31–37
[3] Angenent G C, Franken J, Busscher M, Dijken A, Went J L, Dons H J, Tunen A J. A novel class of MADS box genes is involved in ovule development in Petunia. Plant Cell, 1995, 7: 1569–1582
[4] Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405: 200–203
[5] Wang K J, Tang D, Hong L, Xu W Y, Huang J, Li M, Gu M H, Xue Y B, Cheng Z K. DEP and AFO regulate reproductive habit in rice. PloS Genet, 2010, 6: e1000818
[6] Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G, An G. leafy hull sterile 1 is a homeotic mutation in a rice mads box gene affecting rice flower development. Plant Cell, 2000, 12: 871–884
[7] Gao X C, Liang W Q, Yin C S, Ji S M, Wang H M, Su X, Guo C C, Kong H Z, Xue H W, Zhang D B. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol, 2010, 153: 728–740
[8] Duan Y L, Diao Z J, Liu H Q, Cai M S, Wang F, Lan T, Wu W R. Molecular cloning and functional characterization of OsJAG gene based on a complete-deletion mutant in rice (Oryza sativa L.). Plant Mol Biol, 2010, 74: 605–615
 [9] Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C. DH1, a LOB domain-like protein required for glume formation in rice. Plant Mol Biol, 2008, 66: 491–502
[10] Li X J, Sun L J, Tan L B, Liu F X, Zhu Z F, Fu Y C, Sun X Y, Sun X W, Xie D X. TH1, a DUF640 domain-like gene controls lemma and palea development in rice. Plant Mol Biol, 2012, 78: 351–359
[11] Shinnosuk O, Mayumi K, Maiko S, Akio M, Hirohiko H, Uchida E, Yasuo N, Hitoshi Y. MOSAIC FLORAL ORGANS1, an AGL6-Like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell, 2009, 21: 3008–3025
[12]Sang X C, Li Y F, Luo Z K, Ren D Y, Fang L K, Wang N, Zhao F M, Ling Y H, Yang Z L, Liu Y S, He G H. CHIMERIC FLORAL ORGANS1, encoding a monocot-specific mads box protein, regulates floral organ identity in rice. Plant Physiol, 2012, 160: 788–807
[13] Jin Y, Luo Q, Tong H N, Wang A J, Cheng Z J, Tang J F, Li D Y, Zhao X F, Li X B, Wan J M, Jiao Y L, Chu C C, Zhu L H. An AT-hook gene is required for palea formation and floral organ number control in rice. Dev Biol, 2011, 359: 277–288
[14] Zheng M, Wang Y, Wang Y, Wang C, Ren Y, Lü J, Peng C, Wu T, Liu K, Zhao S, Liu X, Guo X, Jiang L, Terzaghi W, Wan J. DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa). New Phytol, 2015, 206: 1476–1490
[15] Yan D, Zhang X, Zhang L, Ye S, Zeng L, Liu J, Li Q, He Z. CURVED CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development. Plant J, 2015, 82: 12–24
[16] Toriba T, Takuya S, Takahiro Y, Yoshihiro O, Hirokazu T, Hirano H. Distinct regulation of adaxial-abaxial polarity in anther patterning in rice. Plant Cell, 2010, 22: 1452–1462
[17] Song X W, Wang D K, Ma L J, Chen Z Y, Li P C, Cui X, Liu C Y, Cao S Y. Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J, 2012, 71: 378–389
[18] Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X F, Fang J, Xu W, Zhang H, Wang X, Chu C, Deng X, Xue Y B, Cao X F. Oryza sativa Dicer-like 4 reveals a key role for small interfering rna silencing in plant development. Plant Cell, 2007, 19: 2705–2718
[19] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[20] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325
[21] Luo Z K, Yang Z L, Zhong B Q, Li Y F, Xie R, Zhao F M, Ling Y H, He G H. Genetic analysis and fine mapping of a dynamic rolled leaf gene RL10(t) in rice (Oryza sativa L.). Genome, 2007, 50: 811–817
[22] Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. Rice plant development: from zygote to spikelet. Plant Cell Physiol, 2005, 46: 23–47
[23] Timmermans M C, Schultes N P, Jankovsky J P, Nelson T. LEAFBLADELESS1 is required for dorsoventrality of lateral organs in maize. Development, 1998, 125: 2813–2823
[24] Nogueira F T, Madi S, Chitwood D H, Juarez M T, Timmermans M C. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes & Development, 2007, 21: 750–755
[25] Chitwood D H, Guo M, Nogueira F T, Timmermans M C. Establishing leaf polarity: the role of small RNAs and positional signals in the shoot apex. Development, 2007, 134: 813–823

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!