欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (09): 1298-1308.doi: 10.3724/SP.J.1006.2016.01298

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

2个玉米ZmCRY1a基因的克隆及其响应光质处理的表达模式

闫蕾1,2,**,杨宗举2,3,**,苏亮2,肖阳3,郭林2,宋梅芳2,4,孙蕾2,3,孟凡华2,白建荣1,5,*,杨建平2,*   

  1. 1山西大学生物工程学院, 山西太原030006;2中国农业科学院作物科学研究所, 北京100081;3 中国农业科学院研究生院, 北京100081;4 北京市辐射中心, 北京100875;5山西省农业科学院作物科学研究所, 山西太原030031
  • 收稿日期:2016-01-20 修回日期:2016-05-09 出版日期:2016-09-12 网络出版日期:2016-06-02
  • 通讯作者: 杨建平,E-mail: yangjianping02@caas.cn, Tel: 010-82105859; 白建荣,E-mail: jrbai@sohu.com, Tel: 0351-7639551
  • 基金资助:

    本研究由国家重点研发计划试点专项项目(SQ2016ZY03002918),国家转基因生物新品种培育重大专项(2016ZX08010002-003-002),国家自然科学基金项目(3157026),北京市自然科学基金(重点)项目(6151002)和中国农业科学院科技创新工程项目资助。

Molecular Cloning of Two Maize (Zea mays) CRY1a Genes and Their Expression Patterns of in Response to Different Light Treatments

YAN Lei1,2,**,YANG Zong-Ju2,3,**,SU Liang2,XIAO Yang3,GUO Lin2,SONG Mei-Fang2,4,SUN Lei2,3,MENG Fan-Hua2,BAI Jian-Rong1,5,*,YANG Jian-Ping2,*   

  1. 1 College of Biology Engineering, Shanxi University, Taiyuan 030006, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 4Beijing Radiation Center, Beijing 100875, China; 5Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
  • Received:2016-01-20 Revised:2016-05-09 Published:2016-09-12 Published online:2016-06-02
  • Contact: Yang Jianping,E-mail: yangjianping02@caas.cn, Tel: 010-82105859; Bai jianrong,E-mail: jrbai@sohu.com, Tel: 0351-7639551
  • Supported by:

    This study was supported by the Special project of national key research and development project (SQ2016ZY03002918), the Genetically Modified Organisms Breeding Major Projects of China (2016ZX08010002-003-002), the National Natural Science Foundation of China (31570268), the Beijing Natural Science Foundation (6151002), and the Agricultural Science and Technology Innovation Program (ASTIP).

摘要:

隐花色素(Cryptochrome, CRY)是植物蓝光的主要受体,参与其调节生长发育及生物钟过程。为研究隐花色素在玉米光形态建成及生物钟调控方面的作用,本研究利用同源克隆的方法得到玉米自交系B73的2个ZmCRY1a基因的cDNA序列,分别命名为ZmCRY1a1ZmCRY1a2。这2个基因的编码区(coding DNA sequence, CDS)序列长度都为2124个核苷酸,编码707个氨基酸。生物信息学分析表明ZmCRY1a1和ZmCRY1a2推测的氨基酸序列均包含DNA photolyase、FAD binding和Crytochrome C结构域;与拟南芥及其他常见作物的CRY比对并构建系统发育树显示,这2个基因与水稻OsCRY1a氨基酸序列一致性最高,而与拟南芥和大豆等双子叶植物的CRY1氨基酸序列一致性相对较低。利用实时荧光定量PCR分析了ZmCRY1a1ZmCRY1a2在不同器官及响应光质、光质转换及长日照与短日照处理的表达模式。在检测的器官中,ZmCRY1a1的表达丰度均高于ZmCRY1a2;这2个基因在成株期叶片中表达丰度最高,分别是根中ZmCRY1a1的52.1和6.2倍。相对于黑暗下,二者在各种持续光质中的表达丰度均较高,尤其在蓝光和远红光条件下。尽管是作为编码蓝光受体的基因,2个ZmCRY1a的表达却能强烈地响应远红光和红光转换处理。同样二者也能响应不同光周期处理,长日照条件下,ZmCRY1a1的转录在一个光周期内共出现5个峰值,而ZmCRY1a2的转录只有4个峰值;短日照条件下,2个ZmCRY1a的表达出现了极其相似的模式,均在进入黑暗后10 h和14 h时出现2个最高峰。由此推测2个ZmCRY1a可能在玉米光形态建成与开花调节中发挥重要作用。

关键词: 玉米, 隐花色素, 光信号转导, 基因克隆, 表达模式

Abstract:

Cryptochromes are blue light receptors that regulate the development of growth and circadian clock in plants. To stress study the functions of crytochrome 1 (CRY1) on photomorphogenesis and flowering regulation in maize (Zea mays L.), we isolated the cDNA clones of two ZmCRY1a genes from inbred line B73 by homologous cloning, and designated as ZmCRY1a1 and ZmCRY1a2. The length of both ZmCRY1a coding DNA sequences were 2124 nucleotides, which encoded 707 amino acid residues. Bioinformatics analyses were employed to predict their function domains and to build a phylogenetic relationship tree among plant CRY1 homologs by the DNAMAN software and the NCBI blast. The two ZmCRY1a proteins possessed three function domains: DNA photolyase, FAD binding, and Crytochrome C domains. Phylogenetic analysis indicated that the two ZmCRY1a proteins belonged to the same branch with OsCRY1a, while showing low similarity to other CRY1 proteins from dicotyledonous species, such as A. thaliana and Glycine max. The transcription abundances of two ZmCRY1a genes in different organs and in response to light treatments were detected using quantitative RT-PCR (qRT-PCR). qRT-PCR assays indicated that the two ZmCRY1a genes were highly expressed in leaf with 52.1 or 6.2 times higher than ZmCRY1a1 abundance in root, respectively. The transcription abundances of the both genes were very high under different continuous light conditions, especially in blue and far-red light. Although encoding blue light receptors, they both greatly responded to dark-to-far-red and dark-to-red transitions. In addition, their transcription abundances could also respond to photoperiod treatment (both long-day and short-day conditions). In long-day condition, ZmCRY1a1 abundance hadfive peaks and ZmCRY1a2 abundance hadfour peaks. In short-day condition, both ZmCRY1a genes had two big peaks which happened at 10 h and 14 h after transition into darkness. Our results suggest that both ZmCRY1a genes may be involved in seedling de-etiolation and flowering time control, thus their roles in crop improvement are worthy of more exploration in the future.

Key words: Zea mays.L, Cryptochrome, Light signaling transduction, Gene cloning, Expression pattern

[1]Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281–311
[2]Li J G, Li G, Wang H Y, Deng X W. Phytochrome signaling mechanisms. The Arabidopsis Book, 2011, e0148 (doi: 10.1199/tab.0148)
[3]Quail P H. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 2002, 3: 85–93
[4]詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平. 利用修饰光敏色素信号途径进行品种改良的可行性. 中国农业科学, 2012, 45: 3249–3255
Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P. A new strategy for crop improvement through modification of phytochrome signaling pathways. Sci Agric Sin, 2012, 45: 3249–3255 (in Chinese with English abstract)
[5]Briggs W R, Olney M A. Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol, 2001, 125: 85–88.
[6]Lin C T. Blue light receptors and signal transduction. Plant Cell, 2002, 14: S207–S225
[7]Ahmad M, Cashmore A R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 1993, 366: 162–166
[8]Cashmore A R. Cryptochromes: Enabling plants and animals to determine circadian time. Cell, 2003, 114: 537–543
[9]Lin C T, Shalitin D. Cryptochrome structure and signal transduction. Annu Rev Plant Biol, 2003, 54: 469–496
[10]Sancar A. Structure and function of DNA photolyase and cryptochrome blue light photoreceptors. Chem Revs, 2003, 103: 2203–2237
[11]Guo H, Yang H Q, Mockler T C, Lin C T. Regulation of flowering time by Arabidopsis photoreceptor. Science, 1998, 279: 1360–1363
[12]Li Q H, Yang H Q. Cryptochrome Signaling in Plants. Photochem Photobiol, 2007, 83: 94–101
[13]Shalitin D, Yang H Q, Mockler T C, Maymon M, Guo H, Whitelam G C, Lin C T. Regulation of Arabidopsis cryptochrome 2 by blue-light dependent phosphorylation. Nature, 2002, 417: 763–767
[14]Ahmad M, Jarillo J A, Cashmore A R. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell, 1998, 10: 197–207
[15]Lin C T, Yang H Q, Guo H, Mockler T, Chen J, Cashmore A R. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA, 1998, 95: 2686–2690
[16]Yu X, Klejnot J, Zhao X, Shalitin D, Maymon M, Yang H Q, Lee J, Liu X, Lin C T. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell, 2007, 19: 3146–3156
[17]Kleine T, Lockhart P, Batschauer A. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J, 2003, 35: 93–103
[18]Selby C P, Sancar A. A cryptochrome/photolyase class of enzymes with single stranded DNA specific photolyase activity. Proc Natl Acad Sci USA, 2006, 103: 17696–17700
[19]陈福禄, 李宏宇, 林辰涛, 傅永福. 拟南芥隐花色素突变体抑制子的筛选及其表型分析. 中国农业科技导报, 2009, 11(3): 93–97
Chen F L, Li H Y, Lin C T, Fu Y F. Screening and phenotypic analysis of suppressor of cryptochromes mutant in Arabidopsis. J Agric Sci Technol, 2009, 11(3): 93–97 (in Chinese with English abstract)
[20]Immeln D, Schlesinger R, Heberle J, Kottke T. Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. J Biol Chem, 2007, 282: 21720–21728.
[21]Imaizumi T, Kanegae T, Wada M. Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell, 2000, 12: 81–96.
[22]Imaizumi T, Kadota A, Hasebe M, Wada M. Cryptochrome light signals control development to suppress auxin sensitivity in the moss physcomitrella patens. Plant Cell, 2002, 14: 373–386.
[23]Ninu L, Ahmad M, Miarelli C, Cashmore A R, Giuliano G. Cryptochrome 1 controls tomato development in response to blue light. Plant J, 1999, 18: 551–556
[24]Giliberto L, Perrotta P, Pallara P, Weller J L, Fraser P D, Bramlev P M, Flore A, Tavazza M, Giuliano G. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol, 2005, 137: 199–208.
[25]Chatterjee M, Sharma P, Khurana J P. Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation. Plant Physiol, 2006, 141: 61–74
[26]Platten J D, Foo E, Elliott R C, Hecht V, Reid J B, Weller J L. Cryptochrome 1 contributes to blue-light sensing in pea. Plant Physiol, 2005, 139: 1472–1482
[27]Platten J D, Foo E, Elliott R C, Hecht V, Reid J B, Weller J L. The cryptochrome gene family in pea includes two differentially expressed CRY2 genes. Plant Mol Biol, 2005, 59: 683–696
[28]Zhang Q Z, Li H Y, Li R, Hu R B, Fan C M, Chen F L, Wang Z H, Liu X, Fu Y F, Lin C T. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA, 2008, 105: 21028–21033
[29]Meng Y Y, Li H Y, Wang Q, Liu B, Lin C T. Blue light-dependent interaction between Cryptochrome2 and CIB1 regulates transcription and leaf senescence in soybean. Plant Cell, 2013, 25: 4405–4420
[30]Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M. Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol, 2006, 47: 915–925
[31]Zhang Y C, Gong S F, Sang F, Yang H Q. Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. Plant J, 2006, 46: 971–983
[32]Toth R, Kevei E, Hall A, Millar A, J, Nagy F, Kozma-Bognar L. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol, 2001, 127: 1607–1616
[33]Facella P, Loredana L, Carbone F, Galbraith D W, Giuliano G, Perrotta G. Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors. PLoS One, 2008, 3(7): e2798
[34]Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science, 2008, 322: 1535–1539
[35]Xu P, Xiang Y, Zhu H, Xu H, Zhang Z Z, Zhang C Q, Zhang L X, Ma Z Q. Wheat cryptochromes: Subcellular localization and involvement in photomorphogenesis and osmotic stress responses. Plant Physiol, 2009, 149: 760–774
[36]Barrero J M, Downie A B, Xu Q, Gubler F. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination. Plant Cell, 2014, 26: 1094–1104.
[37]Sharma P, Chatterjee M, Burman N, Khurana J P. Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signaling. Plant Cell Environ, 2014, 37: 961–977
[38]原换换, 孙广华, 闫蕾, 郭林, 樊晓聪, 肖阳, 孟凡华, 宋梅芳, 詹克慧, 杨青华, 杨建平. 玉米ZmPP6C基因的克隆及其响应光质和胁迫处理的表达模式分析. 作物学报, 2016, 42: 170–179
Yuan H H, Sun G H, Yan L, Guo L, Fan X C, Xiao Y, Meng F H, Song M F, Zhan K H, Yang Q H, Yang J P. Molecular cloning of ZmPP6C gene and its expression patterns in response to light and stress treatments in maize (Zea mays L.). Acta Agron Sin, 2016, 42: 170–179 (in Chinese with English abstract)
[39]Rajeevan M S, Ranamukhaarachi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001, 25: 443–451
[40]Schnable J C, Springer N M, Freeling M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA, 2011, 108: 4069–4074
[41]Wei F S, Nelson W, Coe E, Bharti A K, Engler F, Butler E, Kim H R, Goicoechea J L, Chen M S, Lee S, Fuks G, Villeda S H, Schroeder S, Fang Z W, McMullen M, Davis G, Bowers J E, Paterson A H, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing R A. Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genetics, 2007, 3(7): e123
[42]Salse J, Bolot S, Throude M, Jouffe V, Benoît P, Quraishi U M, Calcagno T, Cooke R, Delseny M, Feuilleta C. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell, 2008, 20: 11–24.
[43]Ahmad M, Cashmore A R. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J, 1997, 11: 421–427
[44]Chory J. Genetic interactions between phytochrome A, phytochrome B, cryptochrome 1 during Arabidopsis development. Plant Physiol, 1998, 118: 27–35
[45]Hennig L, Funk M, Whitelam C G, Schafer E. Functional interaction of cryptochrome 1 and phytochrome. Plant Cell, 1999, 20: 289–294
[46]Somers D E, Devlin P F, Kay S A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 1998, 282: 1488–1490
[47]Ahmad M, Jarillo A J, Smirnova O, Cashmore R A. The CRY1 blue light photoreceptor of Arabidopsis interacts with Phytochrome A in vitro. Mol Cell, 1998, 1: 939–948
[48]MaÂs P, Devlin F P, Panda S, Kay S A. Functional interaction of phytochrome B and cryptochrome 2. Nature, 2000, 408: 207–211
[49]Neff M M, Jarillo J A, Capel J, Tang R H, Yang H Q, Alonso J M, Ecker J R, Cashmore A R. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 2001, 410: 487–490
[50]Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116–1120
[51]Pineiro R P, Coupland G. The control of flowering time and floral identity in Arabidopsis. Plant Physiol, 1998, 17: 1–8
[52]Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G. Distinct roles of CONSTANS target genes in reproductive development in Arabidopsis. Science, 2000, 288: 1613–1616

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[9] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!