欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (09): 1309-1318.doi: 10.3724/SP.J.1006.2016.01309

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆籽粒大小与形状性状的QTL定位

陈强**,闫龙**,邓莹莹,肖二宁,刘兵强,杨春燕*,张孟臣*   

  1. 河北省农林科学院粮油作物研究所 / 国家大豆改良中心石家庄分中心 / 农业部黄淮海大豆生物学与遗传育种重点实验室 / 河北省遗传育种重点实验室, 河北石家庄 050035
  • 收稿日期:2016-01-26 修回日期:2016-05-09 出版日期:2016-09-12 网络出版日期:2016-06-06
  • 通讯作者: 张孟臣, E-mail:mengchenzhang@hotmail.net; 杨春燕, E-mail: chyyang66@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(31471522), 河北省自然科学基金项目(C2015301012), 国家高技术研究发展计划(863计划)项目(2012AA101106), 国家现代农业产业技术体系建设专项(CARS-004-PS06)和国家转基因生物新品种培育重大专项(2014ZX0800402B)资助。

Mapping Quantitative Trait Loci for Seed Size and Shape Traits in Soybean

CHEN Qiang,YAN Long,DENG Ying-Ying,Xiao Er-ning,Liu Bing-Qiang,YANG Chun-Yan*,ZHANG Meng-Chen*   

  1. Sciences / Shijiazhuang Branch of National Soybean Improvement Center / Huanghuaihai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Shijiazhuang 050035, China
  • Received:2016-01-26 Revised:2016-05-09 Published:2016-09-12 Published online:2016-06-06
  • Contact: 张孟臣, E-mail:mengchenzhang@hotmail.net; 杨春燕, E-mail: chyyang66@163.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31471522), the Natural Science Foundation of Heibei Province (C2015301012), the National High-tech Research and Development Program (863 Torch Program) (2012AA101106), the China Agriculture Research System (CARS-004-PS06), and the National Science and Technology Major Project (2014ZX0800402B). 

摘要:

大豆籽粒大小和粒形性状不仅与产量和外观品量紧密相关,还对机械化播种有着一定的影响。本研究采用大粒栽培品种冀豆12与小粒半野生地方品种黑豆(ZDD03651)杂交衍生的包含188个重组自交系的F6:8和F6:9群体为材料,对粒长、粒宽、粒厚、长宽比、长厚比和宽厚比的遗传结构进行分析,并分别以WinQTLCart 2.5、QTLNetwork 2.1和IciMapping 4.1 3种模型对以上性状的加性效应QTL,QE互作效应及上位性互作效应进行检测。6个性状的广义遗传率介于64.01%~79.57%,遗传力较高,且除粒厚外的其他性状受环境影响显著。共定位到加性效应QTL38个,单个QTL的贡献率介于2.21%~10.71%之间,分布在12条染色体的17个标记区间内,且12个染色体区段至少与两种性状相关。两种及以上模型同时检测到的QTL有24个,3种模型均能检测到的QTL共8个,分别为qSL-17-1、qSL-18-1、qSW-6-1、qST-2-1、qST-6-1、qSLT-2-2、qSWT-2-1qSWT-20-1。检测到7对上位性互作QTL,分别涉及粒长、粒宽、长宽比、长厚比和宽厚比,互作效应贡献率介于0.78%~6.20%之间。QE互作效应贡献率均较低,介于0.0005%~0.3900%之间。以多种模型同时检测结果准确性较高,可为分子标记辅助育种工作提供可靠理论基础。

关键词: 大豆, 粒形, QTL, 上位性互作

Abstract:

Seed size and shape not only relate to seed yield and quality, but also affect mechanical seeding in soybean (Glycine max L.). In this study, F6:8 and F6:9 populations derived from Jidou 12 × Heidou were used to analyze the genetic character and detect quantitative trait locus (QTL) for seed length, seed width, seed thickness, seed length-to-width ratio, seed length-to-thickness ratio, and seed width-to-thickness ratio. Softwares WinQTLCart 2.5, QTLNetwork 2.1 and IciMapping 4.1 were used to identify the additive, epistatic and environmentally interacted QTLs for seed size and shape related traits. As results, the heritability of the six traits varied from 64.01% to 79.57%. A total of 38 additive QTLs were identified to be located on 12 chromosomes, with the heritability varying from 2.21% to 10.71%.Eight of them(qSL-17-1,qSL-18-1, qSW-6-1, qST-2-1, qST-6-1, qSLT-2-2, qSWT-2-1,and qSWT-20-1)were identified using three methods, simultaneously. In the meantime, seven pairs of additive × additive epistasis were detected and the heritability of epistasis pairs ranged from 0.78 to 6.20%. Additionally, the effects of QTL by environment interaction ranged from 0.0005% to 0.3900%. The QTL identified using different mapping softwares in this study could provide a reliable theoretical basis for marker-assisted selection breeding.

Key words: Soybean, Seed shape, Quantitative trait locus, Epistasis

[1] Liang H Z, Li W D, Wang H, Fang X J. Genetic effects on seed traits in soybean. Acta Genet Sin, 2005, 32: 1199–1204
[2] Wilson D O Jr. Storage of orthodox seeds. In: Basra AS , ed. Seed quality: basic mechanisms agricultural implications. New York: Food Products Press, 1995. pp 173–208
[3] Nelson R L, Wang P. Variation and evaluation of seed shape in soybean. Crop Sci, 1989, 29: 147–150
[4] Cober E R, Voldeng H D, Fregeau-Reid J A. Heritability of seed shape and seed size in soybean. Crop Sci, 1997, 37: 1767–1769
[5] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171
[6] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630
[7] Wan X Y, Weng J F, Zhai H Q, Wang J K, Lei C L, Liu X L, Guo T, Jiang L, Su N, Wan J M. QTL analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics, 2008, 179: 2239–2252
[8] Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012, 109: 21534–21539
[9] Sun L J, Li X J, Fu Y C, Zhu Z F, Tan L B, Liu F X, Sun X Y, Sun X W, Sun C Q. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J Integr Plant Biol, 2013, 55: 938–949
[10] Moongkanna J, Nakasathien S, Novitzky W P, Kwanyuen P, Sinchaisri P, Srinives P. SSR markers linking to seed traits and total oil content in soybean. Thai J Agric Sci, 2011, 44: 233–241
[11] Salas P, Oyarzo-Llaipen J C, Wang D, Chase K, Mansur L. Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.). Theor Appl Genet, 2006, 113: 1459–1466
[12] 刘晓芬. 大豆栽培品种群体粒形性状及百粒重的关联分析. 南京农业大学博士学位论文, 江苏南京, 2012
Liu X F. Association Analysis for Seed Shape Traits and 100-seed Weight in Soybean (Glycine max L. Merr.). PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2012 (in Chinese with English abstract)
[13] Xu Y, Li H N, Li G J, Wang X, Cheng L G, Zhang Y M. Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theor Appl Genet, 2011, 122: 581–594
[14] 牛远, 徐宇, 李广军, 王云清, 刘晓芬, 李河南, 魏世平, 章元明. 大豆籽粒大小和粒形的驯化研究. 大豆科学, 2012, 31: 522–528
Niu Y, Xu Y, Li G J, Wang Y Q, Liu X F, Li H N, Wei S P, Zhang Y M. Domestication of Seed Size and Shape Traits in Soybean. Soybean Sci, 2012, 31: 522–528 (in Chinese with English abstract)
[15] 牛远, 谢芳腾, 布素红, 谢尚潜, 韩世凤, 耿青春, 刘兵, 章元明. 大豆粒形性状QTL的精细定位. 作物学报, 2013, 39: 609–616
Niu Y, Xie F T, Bu S H, Xie S Q, Han S F, Geng Q, Liu B, Zhang Y M. Fine mapping of quantitative trait loci for seed shape traits in soybean. Acta Agron Sin, 2013, 39: 609–616 (in Chinese with English abstract)
[16] Xie F T, Niu Y, Zhang J, Bu S H, Zhang H Z, Geng Q C, Feng J Y, Zhang Y M. Fine mapping of quantitative trait loci for seed size traits in soybean. Mol Breed, 2014, 34: 2165–2178
[17] Hu Z B, Zhang H R, Kan G Z, Ma D Y, Zhang D, Shi G X, Hong D L, Zhang G Z, Yu D Y. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica, 2013, 141: 247–254
[18] Yu S B, Li J X, Xu C G. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad SciUSA, 1997, 94: 922–931
[19] 孙亚男, 仕相林, 蒋洪蔚, 孙殿军, 辛大伟, 刘春燕, 胡国华, 陈庆山. 大豆百粒重QTL的上位效应和基因型×环境互作效应分析. 中国油料作物学报, 2013, 34: 598–603
Sun Y N, Shi X L, Jiang H W, Sun D J, Xin D W, Liu C Y, Hu G H, Chen Q S. Epistatic effects and qE interaction effects of QTLs for 100-seed weight in soybean. Chin J Oil Crop Sci, 2013, 34: 598–603 (in Chinese with English abstract)
[20] Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G, Zhang Q F. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105: 248–257
[21] Niu Y, Xu Y, Liu X F, Yang S X, Wei S P, Xie F T, Zhang Y M. Association mapping for seed size and shape traits in soybean cultivars. Mol Breed, 2013, 31: 785–794
[22] 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 杜华, 崔暐文, 刘学义, 方宣钧. 大豆粒形性状主效QTL环境互作和上位性检测. 中国农业科学, 2013, 46: 5081–5088
Liang H Z, Yu Y L, Yang H Q, Zhang H Y, Dong W, Du H, Cui W W, Liu X Y, Fang X J. Main, environmentally interacted and epistatic QTL for seed shape traits in soybean. Sci Agric Sin, 2013, 46: 5081–5088 (in Chinese with English abstract)
[23] 闫宁, 谢尚潜, 耿青春, 徐宇, 李广军, 刘兵, 汪霞, 李其刚, 章元明. 利用Bayes分层广义线性模型剖析大豆籽粒性状的遗传基础. 作物学报, 2013, 39: 258–268
Yan N, Xie S Q, Geng Q C, Xu Y, Li G J, Liu B, Wang X, Li Q G, Zhang Y M. Genetic basics of seed traits in soybean with bayes hierarchical gengralized linear model method. Acta Agron Sin, 2013, 39: 258–268 (in Chinese with English abstract)
[24] 苏成付, 赵团结, 盖钧镒. 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010, 36: 1100–1107
Su C F, Zhao T J, Gai J Y. Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agron Sin, 2010, 36: 1100–1107 (in Chinese with English abstract)
[25] 李杰勤, 张启军, 叶少平, 赵兵, 梁永书, 彭勇, 吴发强, 王世全, 李平. 四种不同QTL作图方法的比较研究. 作物学报, 2005, 31: 1473–1477
Li J Q, Zhang Q J, Ye S P, Zhao B, Liang Y S, Peng Y, Wu F Q, Wang S Q, Li P. Comparative research on four mapping methods of QTLs. Acta Agron Sin, 2005, 31:1473–1477 (in Chinese with English abstract)
[26] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. North Carolina State University, Raleigh, NC, USA, 2001–2006
[27] Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23: 1527–1536
[28] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374
[29] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283
[30] Nyquist W E, Baker R J. Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci, 1991, 10: 235–322
[31] Lu W G, Wen Z X, Li H C, Yuan D H, Li J Y, Zhang H. Identification of the quantitative trait loci (QTL) underlying water soluble prote incontent in soybean. Theor Appl Genet, 2013, 126: 425–33
[32] 陈强. 大豆籽粒相关性状QTL定位分析. 河北科技师范学院硕士学位论文, 河北秦皇岛, 2014
Chen Q. QTL Mapping for seed related traits in soybean (Glycine max L. Merr.). MS Dissertation of Hebei Normal University of Science & Technology, Qinhuangdao, China, 2014 (in Chinese with English abstract)
[33] 雷雅坤, 闫龙, 杨春燕,.宋晓坤, 张孟臣, 黄占景. 大豆公共遗传图谱C1连锁群SSR标记空白区段的填补. 华北农学报, 2012, 27(6): 5–10
Lei Y K, Yan L, Yang C Y, Song X K, Zhang M C, Huang Z J. Complete the blank section with SSR markers on linkage group C1 of public genetic map in soybean. Acta Agric Boreali-Sin, 2012, 27(6): 5–10 (in Chinese with English abstract)
[34] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer V2.5. Department of Statistics. North Carolina : North Carolina State University, 2007
[35] Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268-1274
[36] Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTL Network: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721–723
[37] 张红梅, 李海朝, 文自翔, 顾和平, 袁星星, 陈华涛, 崔晓艳, 陈新, 卢为国. 大豆籽粒维生素E含量的QTL分析. 作物学报, 2015, 41: 187–196
Zhang H M, Li H C, Wen Z X, Gu H P, Yuan X X, Chen H T, Cui X Y, Chen X, Lu W G. Identification of QTL associated with vitamin e content in soybean seeds. Acta Agron Sin, 2015, 41: 187–196 (in Chinese with English abstract)
[38] McCouch S, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89–99
[39] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128
[40] Mansur L M, Orf J, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomictraits using recombi-nant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336
[41] 杜景红, 樊叶杨, 吴季荣, 庄杰云. 水稻第6染色体短臂产量性状QTL簇的分解. 中国农业科学, 2008, 41: 939–945
Du J H, Fan Y Y, Wu J R, Zhuang J Y. Dissection of QTLs for yield traits on the short arm of rice chromosome 6. Sci Agric Sin 2008, 41: 939–945 (in Chinese with English abstract)

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!