欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (05): 658-668.doi: 10.3724/SP.J.1006.2017.00658

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用II-32B/A7444组合CSSL群体定位水稻7个穗部性状QTL

佘东1,刘强明1,2,李大露1,梁银凤1,刘二宝1,党小景1,洪德林1,*   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室,江苏南京 210095;2重庆市农业科学院,重庆 401329
  • 收稿日期:2016-06-15 修回日期:2017-01-21 出版日期:2017-05-12 网络出版日期:2017-02-17
  • 通讯作者: 洪德林, E-mail: delinhong@njau.edu.cn, Tel: 025-84396626
  • 基金资助:

    本研究由高等学校博士学科点专项科研基金(20130097110001),中央高校基本科研业务费专项基金项目(KYZ201202-9)和国家自然科学基金项目(31571743)资助。

QTL Mapping of Seven Panicle Traits in Rice (Oryza sativa L.) Using Chromosome Segment

SHE Dong1,LIU Qiang-Ming1,2,LI Da-Lu1,LIANG Yin-Feng1,LIU Er-Bao1,DANG Xiao-Jing1,HONG De-Lin1,*   

  1. 1 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; 2 Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
  • Received:2016-06-15 Revised:2017-01-21 Published:2017-05-12 Published online:2017-02-17
  • Contact: Hong Delin, E-mail: delinhong@njau.edu.cn, Tel: 025-84396626
  • Supported by:

    This study was supported by the Doctoral Found of Ministry of Education (20130097110001), a grant from the Ministry of Education of China for Basic Scientific Research of National Universities (KYZ201202-9) and the National Natural Science Foundation of China (31571743).

摘要:

为发掘水稻穗部性状有利等位变异,构建了以籼稻保持系II-32B为遗传背景的A7444染色体片段置换系群体;利用QTL IciMapping 4.1软件对该群体7个穗部性状进行了QTL定位。结果2年共检测到26个QTL。2年均检测到的13个QTL中,控制一次枝梗数的4个QTL位于第1、第6、第8和第9染色体,平均贡献率分别为15.16%、13.1%、29.74%和11.21%,平均加性效应分别为?1.40、1.01、1.11和0.77。控制二次枝梗数的2个QTL位于第6和第8染色体,平均贡献率分别为10.97%和21.39%,平均加性效应分别为5.45和6.36。控制每穗总粒数的3个QTL位于第2、第6和第8染色体,平均贡献率分别为8.65%、12.52%和31.22%,平均加性效应分别为?18.61、22.23和31.87。控制每穗实粒数的1个QTL位于第8染色体,平均贡献率为28.06%,平均加性效应30.85。控制千粒重的2个QTL位于第2染色体,平均贡献率分别为44.65%和17.51%,平均加性效应分别为2.88和?2.51。控制粒宽的1个QTL位于第10染色体,平均贡献率为21.96%,平均加性效应为0.11。第2、第6和第8染色体分别存在同时控制二次枝梗数、每穗总粒数和每穗实粒数QTL的区段。QTL qSBN6和qSBN8所在区间与Hd1和DTH8的相同,但分别存在16处和1处碱基差异,推测为Hd1和DTH8的不同等位基因。qSBN2为新检测到的控制二次枝梗数位点。研究结果为实施分子标记聚合育种提供了有用信息。

关键词: 水稻, 染色体片段置换系, 穗部性状, 数量性状位点

Abstract:

In order to mine elite alleles of panicle traits in rice, a population of chromosome segment substitution lines (CSSLs) was constructed by using an indica variety II-32B as receptor parent and a japonica variety A7444 as donor parent. QTLs for seven panicle traits were detected using the CSSL population by QTL IciMapping 4.1 software. A total of 26 QTLs for the seven traits were identified across two years. Among the 13 QTLs detected in both years, four QTLs for primary branch number (PBN) were located on chromosomes 1, 6, 8, and 9, with average contribution rate of 15.16%, 13.1%, 29.74%, and 11.21%, and average additive effects in two years of ?1.40, 1.01, 1.11, and 0.77, respectively. Two QTLs for secondary branch number (SBN) were located on chromosomes 6 and 8, with average contribution rate of 10.97% and 21.39%, and average additive effects of 5.45 and 6.36, respectively. Three QTLs for spikelets per panicle (SPP) were located on chromosomes 2, 6, and 8, with average contribution rate of 8.65%, 12.52%, and 31.22%, and average additive effects of ?18.61, 22.23, and 31.87, respectively. One QTL for grains per panicle (GPP) was located on chromosome 8, with average contribution rate of 28.06%, and average additive effect of 30.85. Two QTLs for 1000-grain weight (TGW) were located on chromosome 2, with average contribution rate of 44.65% and 17.51%, and average additive effects of 2.88 and ?2.51. One QTL for grain width (GW) was located on chromosome 10, with average contribution rate of 21.96% in two years, and average additive effect of 0.11. QTL segment controlling SBN, SPP and GPP simultaneously were found on chromosomes 2, 6 and 8, respectively. From the bi-parent DNA sequence comparison, it is speculated that QTL qSBN6 and qSBN8 might be different alleles of Hd1 and DTH8, respectively. QTL qSBN2 was a novel locus detected in the present study. The results of this study provide useful information for pyramiding breeding through marker-assisted selection.

Key words: Rice, Chromosome segment substitution lines, Panicle traits, Quantitative trait locus

[1] 徐正进, 邵国军, 韩勇, 张学军, 全成哲, 潘国军, 陈温福. 东北三省水稻产量和品质及其与穗部性状关系的初步研究. 作物学报, 2006, 32: 1878–1883 Xu Z J, Shao G J, Han Y, Zhang X J, Quan C Z, Pan G J, Chen W F. A preliminary study on yield and quality of rice and their relationship with panicle characters in northeast region of China. Acta Agron Sin, 2006, 32: 1878–1883 (in Chinese with English abstract) [2] Li S B, Qian Q, Fu Z M, Zeng D L, Meng X B, Kyozuka J, Maekawa M, Zhu X D, Zhang J, Li J Y, Wang Y H. Short panicle 1 encodes a putative PTR family transporter and determines rice panicle size. Plant J, 2009, 58: 592–605 [3] Ikeda-Kawakatsu K, Yasuno N, Oikawa T, Iida S, Nagato Y, Maekawa M, Kyozuka J. Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiol, 2009, 150: 736–747 [4] Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen R H, Yamazaki R, Tokunaga H, Kitaguchi Y, Sato Y, Nagamura Y, Ushijima T, Kumamaru T, Lida S, Maekawa M, Kyozuka J. TAWAWA1, a regulator of rice inflorescence architecture, function through the suppression of meristem phase transition. Proc Natl Acad Sci USA, 2013, 110: 767–772 [5] Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741–745 [6] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707–711 [7] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630 [8] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023–1028 [9] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949–954 [10] 洪德林, 江建华, 胡文德, 王盈盈. 粳稻剑叶斜下伸资源的发现与大剑叶角度的遗传和SSR标记. 杂交水稻, 2010, 25: 285–293 Hong D L, Jiang J H, Hu W D, Wang Y Y. Discovery of flag leaf oblique extension resource and genetics of large flag angle and SSR marker. Hybrid Rice, 2010, 25: 285–293 (in Chinese with English abstract) [11] Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhai H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88: 93–104 [12] Meng L, Li H H, Zhang L Y, Wang J K. QTL mapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3: 269–283 [13] McCouch S R. Gene nomenclature system for rice. Rice, 2008, 1: 72–84 [14] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473–2484 [15] Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu Y Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747–1758 [16] Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319–330 [17] Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97: 37–44 [18] Endo-Higashi N, Izawa T. Flowering time genes heading date 1 and early heading date 1 together control panicle development in rice. Plant Cell Physiol, 2011, 52: 1083–1094 [19] Vaughan D A. The Wild Relatives of Rice. Manila (Philippines): International Rice Research Institute, 1994. pp 31–65 [20] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406–410 [21] Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X, Fu X D. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet, 2014, 46: 652–656 [22] Koumoto T, Shimada H, Kusano H, She K C, Iwamoto M, Takano M. Rice monoculm mutation moc2, which inhibits outgrowth of the second tillers, is ascribed to lack of a fructose-1,6-bisphosphatase. Plant Biotechnol, 2013, 30: 47–56 [23] 徐建龙, 薛庆中, 罗利军, 黎志康. 水稻粒重及其相关性的遗传解析. 中国水稻科学, 2002, 16: 6–10 Xu J L, Xue Q Z, Luo Z J, Li Z K. Genetic dissection of grain weight and its related traits in rice (Oryza sativa L.). Chin J Rice Sci, 2002, 16: 6–10 (in Chinese with English abstract) [24] Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2016, 2: 1–5

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!