欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (05): 648-657.doi: 10.3724/SP.J.1006.2017.00648

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻斑点叶突变体splZ97的生理特性及其基因定位

韦荔全1,**,罗延敏1,**,王文强1,池长程1,黄福灯2,向珣1,程方民1,潘刚1,*   

  1. 1浙江大学农业与生物技术学院, 浙江杭州 310058; 2 浙江省农业科学院作物与核技术利用研究所, 浙江杭州 310021
  • 收稿日期:2016-08-13 修回日期:2017-01-21 出版日期:2017-05-12 网络出版日期:2017-02-17
  • 通讯作者: 潘刚, E-mail: pangang12@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(31271691)和国家转基因生物新品种培育重大专项(2016ZX08001-002)资助。

Physiological Characters and Gene Mapping of a Spotted-leaf Mutant splZ97 in Rice

WEI Li-Quan1,**,LUO Yan-Min1,**,WANG Wen-Qiang1,CHI Chang-Cheng1,HUANG Fu-Deng2,XIANG Xun1,CHENG Fang-Min1,PAN Gang1,*   

  1. 1 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; 2 Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
  • Received:2016-08-13 Revised:2017-01-21 Published:2017-05-12 Published online:2017-02-17
  • Contact: 潘刚, E-mail: pangang12@126.com
  • Supported by:

    This study was supported by the Natural Science Foundation of China (31271691) and the National Major Project for Developing New GM Crops (2016ZX08001-002)

摘要:

通过EMS诱变籼稻恢复系珍97获得一个稳定遗传的褐色斑点叶突变体splZ97 (spotted leaf Z97, splZ97)。大田条件下,突变体splZ97的斑点叶性状始于分蘖期,此后由叶缘向叶中下部迅速扩散,直至整个叶片,严重时叶片部分或整体枯死,从而致使突变体株高、每穗粒数及结实率极显著低于野生型对照。生理分析表明,与野生型珍97相比,孕穗期突变体splZ97剑叶、倒二叶和倒三叶的叶绿素含量极显著降低,而POD (peroxidase, POD)活性、O2?含量及MDA (malondialdehyde, MDA)含量升高;突变体splZ97倒二叶和倒三叶的CAT (catalase, CAT)活性和可溶性蛋白含量极显著降低,而SOD (superoxide dismutase, SOD)活性则极显著增加。组织化学分析进一步证实,突变体splZ97的叶片明显累积O2?。此外,突变体splZ97苗期经盐胁迫处理后,其株高及根长明显受到抑制。遗传分析表明,突变体splZ97的斑点叶性状受一对隐性核基因控制,借助图位克隆技术将该基因定位于第12染色体长臂的RM28466与RM28485两个SSR标记之间,物理距离为189 kb,该结果为进一步克隆SPLZ97基因并研究其功能奠定了基础。

关键词: 水稻, splZ97, 斑点叶, 生理特性, 基因定位

Abstract:

A spotted-leaf mutant splZ97 was isolated from a mutant bank generated by EMS mutagenesis of indica restore line Zhen 97. Under field conditions, the brown lesion-mimics mutant splZ97 firstly displayed at the tip and edge of leaf blade at tillering stage, and then gradually spread to whole leaf, resulting in the death of the whole blade when the symptom was severe. At the same time, the major agronomic traits including plant height, grain number per panicle and seed-setting rate were markedly affected. Compared with the wild-type the flag leaf, the second leaf from top and the third leaf from top at heading stage, chlorophyll contents in the mutant splZ97 significantly decreased, while POD (peroxidase, POD) activity, O2? level and MDA (malondialdehyde, MDA) content increased. In addition, CAT (catalase, CAT) activity and soluble protein content of the second leaf from top and the third leaf from top of the mutant decreased as compared with the wild type; on the contrary, the SOD (superoxide dismutase, SOD) activity significantly increased. The histochemical analysis further indicated that O2? accumulated in the leaf blade of the mutant splZ97. In addition, under salt stress at seedling stage, the shoot length and root length of the mutant splZ97 were significantly shorter than these of the wild type. Genetic analysis and gene mapping showed that splZ97 was controlled by a single recessive nuclear gene, which was mapped to a region of 189 kb flanked by two SSR markers RM28466 and RM28485 on the long arm of chromosome 12. These results achieved in the present study would further facilitate the cloning and functional analysis of the gene SPLZ97.

Key words: Rice, splZ97, Spotted-leaf, Physiological characters, Gene mapping

[1] 孙惠敏, 张春娇, 李保同, 潘晓华. 水稻类病斑突变体的研究进展. 上海农业学报, 2014, 30: 142–147 Sun H M, Zhang C Q, Li B T, Pan X H. Advances of study on rice lesion mimic mutants. Acta Agric Shanghai, 2014, 30: 142–147 (in Chinese with English abstract) [2] Moeder W, Yoshioka K. Lesion mimic mutants: a classical, yet still fundamental approach to study programmed cell death. Plant Signal Behav,2008, 3: 764–767 [3] Wu C, Bordeos A, Madamba M R, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619 [4] Sun C, Liu L, Tang J, Lin A, Zhang F, Fang J, Zhang G, Chu C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29–37 [5] Zhang H, Cao Y, Zhao J, Li X, Xiao J, Wang S. A pair of orthologs of a leucine-rich repeat receptor kinase-like disease resistance gene family regulates rice response to raised temperature. BMC Plant Biol, 2011, 11: 160 [6] Yang D L, Yang Y, He Z. Roles of plant hormones and their interplay in rice immunity. Mol Plant, 2013, 6: 675–685 [7] Bruggeman Q, Raynaud C, Benhamed M, Delarue M. To die or not to die? Lessons from lesion mimic mutants. Front Plant Sci, 2015, 6: 24 [8] Lorrain S, Vailleau F, Balagué C, Roby D. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants. Trends Plant Sci, 2003, 8: 263–271. [9] Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530–7535 [10] Wang L, Pei Z, Tian Y, He C. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact, 2005, 18: 375–384 [11] Wang S H, Lim J H, Kim S S, Cho S H, Yoo S C, Koh H J, Sakuraba Y, Paek N C. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signaling and delays leaf senescence in rice. J Exp Bot, 2015, 66: 7045–7059. [12] Jiang H, Chen Y, Li M, Xu X, Wu G. Overexpression of SGR results in oxidative stress and lesion-mimic cell death in rice seedlings. J Integr Plant Biol, 2011, 53: 375–387 [13] Wang Z, Wang Y, Hong X, Hu D, Liu C, Yang J, Li Y, Huang Y, Feng Y, Gong H, Li Y, Fang G, Tang H, Li Y. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defense responses in rice. J Exp Bot, 2015, 66: 973–987 [14] Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308–11313 [15] Zeng L R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16: 2795–2808 [16] Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847–860 [17] Jiao B B, Wang J J, Zhu X D, Zeng L J, Li Q, He Z H. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205–217 [18] Chen X, Hao L, Pan J, Zheng X, Jiang G, Jin Y, Gu Z, Qian Q, Zhai W, Ma B. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939–949 [19] Tamiru M, Takagi H, Abe A, Yokota T, Kanzaki H, Okamoto H, Saitoh H, Takahashi H, Fujisaki K, Oikawa K, Uemura A, Natsume S, Jikumaru Y, Matsuura H, Umemura K, Terry M J, Terauchi R. A chloroplast-localized protein LESION AND LAMINA BENDING affects defense and growth responses in rice. New Phytol, 2016, 210:1282–1297 [20] Yang X, Gong P, Li K, Huang F, Cheng F, Pan G. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice. J Exp Bot, 2016, 67: 2761–2776 [21] Qiao Y, Jiang W, Lee J, Park B, Choi M S, Piao R, Woo M O, Roh J H, Han L, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258–274 [22] Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, Saitoh H, Takagi H, Natsume S, Undan J R, Undan J, Terauchi R. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics, 2015, 290: 611–622 [23] Manosalva P M, Bruce M, Leach J E. Rice 14-3-3 protein (GF14e) negatively affects cell death and disease resistance. Plant J, 2011, 68: 777–787 [24] Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.). Genes Genet Syst, 2012, 87: 169–179 [25] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473–497 [26] 张治安, 陈展宇. 植物生理学实验技术. 长春: 吉林大学出版社, 2008. p 7 Zhang Z A, Chen Z Y. Experiment Technology of Plant Physiology. Changchun: Jilin University Press, 2008. p 7 (in Chinese) [27] Kariola T, Brader G, Li J, Palva E T. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell, 2005, 17: 282–294 [28] Mahalingam R, Jambunathan N, Gunjan S K, Faustin E, Weng H, Ayoubi P. Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana. Plant Cell Environ, 2006, 29: 1357–1371 [29] Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L L, Li X, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198–1205 [30] Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSR) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607 [31] 伍泽堂. 超氧自由基与叶片衰老时叶绿素破坏的关系. 植物生理学通讯, 1991, 27: 277–279 Wu Z T. Relationship between superoxide radical and destruction of chlorophyll during leaf senescence. Plant Physiol Commun, 1991, 27: 277–279 (in Chinese with English abstract) [32] Wang F, Wu W, Wang D, Yang W, Sun J, Liu D, Zhang A. Characterization and genetic analysis of a novel light-dependent lesion mimic mutant, lm3, showing adult-plant resistance to powdery mildew in common wheat. PLoS One, 2016, 11: e0155358 [33] Hideg E, Kalai T, Kos P B, Asada K, Hideg K. Singlet oxygen in plants-its significance and possible detection with double (fluorescent and spin) indicator reagents. Photochem Photobiol, 2006, 82: 1211–1218 [34] Dietrich R A, Richberg M H, Schmidt R, Dean C, Dangl J L. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685–694 [35] 华春, 王仁雷. 杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化. 西北植物学报, 2003, 23: 406–409 Hua C, Wang R L. Changes of SOD and CAT activities and MDA content during senescence of hybrid rice and three lines leaves. Acta Bot Boreal-Occident Sin, 2003, 23: 406–409 (in Chinese with English abstract) [36] You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci, 2015, 6: 1092 [37] 汪媛. 水稻叶片衰老过程生理变化及蛋白质降解与蛋白酶活性变化研究. 扬州大学硕士学位论文, 江苏扬州, 2010 Wang Y. The Research of Physiological Changes, Protein Degradation and Protease Activity in the Process of Leaf Senescence in Rice. MS Thesis of Yangzhou University, Yangzhou, China, 2010 (in Chinese with English abstract) [38] 赵晨晨, 黄福灯, 龚盼, 杨茜, 程方民, 潘刚. 水稻叶片早衰突变体osled的生理特征与基因定位. 作物学报, 2014, 40: 1946–1955 Zhao C C, Huang F D, Gong P, Yang X, Cheng F M, Pan G. Physiological characteristics and gene mapping of a leaf early-senescence mutant osled in rice. Acta Agron Sin, 2014, 40: 1946–1955 (in Chinese with English abstract) [39] Lindemose S, O’Shea C, Jensen M K, Skriver K. Structure, function and networks of transcription factors involved in abiotic stress response. Int J Mol Sci, 2013, 14: 5842–5878 [40] Shao H, Wang H, Tang X. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci, 2015, 6: 902 [41] Ambawat S, Sharma P, Yadav N R, Yadav R C. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants, 2013, 19: 307–321 [42] Bakshi M, Oelmüller R. WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav, 2014, 9: e27700 [43] Raffaele S, Rivas S, Roby D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett, 2006, 580: 3498–3504 [44] Vailleau F, Daniel X, Tronchet M, Montillet J L, Triantaphylidès C, Roby D. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc Natl Acad Sci USA, 2002, 99: 10179–10184 [45] Mall T K, Dweikat I, Sato S J, Neresian N, Xu K, Ge Z, Wang D, Elthon T, Clemente T. Expression of the rice CDPK-7 in sorghum: molecular and phenotypic analyses. Plant Mol Biol, 2011, 75: 467–479 [46] 宋莉欣, 黄奇娜, 奉保华, 施勇烽, 张晓波, 徐霞, 王惠梅, 李小红, 赵宝华, 吴建利. 水稻斑点叶突变体spl21的鉴定与基因定位. 作物学报, 2015, 41: 1519–1528 Song L X, Huang Q N, Feng B H, Shi Y F, Zhang X B, Xu X, Wang H M, Li X H, Zhang B H, Wu J L. Characterization and gene mapping of a spotted-leaf mutant spl21 in rice (Oryza sativa L.). Acta Agron Sin, 2015, 41: 1519–1528 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!