作物学报 ›› 2017, Vol. 43 ›› Issue (07): 1057-1066.doi: 10.3724/SP.J.1006.2017.01057
汪顺义,李欢,刘庆,史衍玺*
WANG Shun-Yi,LI Huan,LIU Qing,SHI Yan-Xi*
摘要:
为探讨施钾调控甘薯根系生长的生理机制,设K0 (K2O: 0 kg hm–2)、K1 (K2O: 75 kg hm–2)、K2 (K2O: 150 kg hm–2)和K3 (K2O: 225 kg hm–2) 4个处理,调查施钾对甘薯生长前期和薯块膨大期根系生长、13C分配量、碳代谢酶活性、光合特性、叶绿素荧光特性、以及产量和产量构成的影响。结果表明, 与CK相比,施钾处理2个生长时期光电子传递速率(ETR)提高12.7%~63.6%,净光合速率(Pn)提高7.2%~26.4%,施钾通过提高光合特性加速光合产物积累,为根系生长提供物质基础。同时,施钾有利于光合产物由地上部向地下部运转,地下部13C分配量提高10.6%~66.2% (P<0.05)。其次,施钾处理提高了块根中蔗糖合酶、磷酸蔗糖合酶、腺苷二磷酸葡萄糖焦磷酸化酶活性,加速了块根中碳的同化,利于光合产物在块根中的积聚,促进甘薯根系分化与生长。生长前期,施钾处理总根长提高13.6%~22.8%,根平均直径提高11.3%~51.9%,显著提高了不定根向毛细根和块根分化量(P<0.05),有利于有效薯块的早期形成,保证有效的单株结薯数。薯块膨大期,施钾处理提高块根生物量,有利于薯块的膨大,提高平均薯块重,最终显著增产。与CK相比,2014年K1、K2和K3处理分别增产15.8%、24.3%和44.7%,2015年分别增产7.9%、13.4%和22.8%。
[1] 王翠娟, 史春余, 王振振, 柴沙沙, 柳洪鹃, 史衍玺. 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响, 作物学报, 2014, 40: 1677–1685 Wang C J, Shi C Y, Wang Z Z, Chai S S, Liu H J, Shi Y X. Effects of plastic film mulching cultivation on young roots growth development, tuber formation and tuber yield of sweet potato. Acta Agrono Sin, 2014, 40: 1677–1685 (in Chinese with English abstract) [2] Pervez H, Ashraf M, Makhdum M I. Influence of potassium nutrition on gas exchange characteristics and water relations in cotton (Gossypium hirsutum L.). Photosynthetica, 2001, 42: 251–255 [3] Lebaudy A, Vavasseur A, Hosy E, Dreyer I, Leonhardt N, Thibaud J B, Very A A, Simonneau T, Sentenac H. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc Natl Acad Sci USA, 2008, 105: 5271–5276 [4] Han Q. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiol, 2011, 31: 976–984 [5] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2008, 133: 670–681 [6] 宁运旺, 曹炳阁, 朱绿丹, 张永春, 汪吉东, 许仙菊, 张辉, 马洪波. 施钾水平对甘薯干物质积累与分配和钾效率的影响. 江苏农业学报, 2012, 28(2): 320–325 Ning Y W, Cao B G, Zhu L D, Zhang Y C, Wang J D, Xu X J, Zhang H, Ma H B. Effects of potassium application rates on dry matter accumulation, dry matter distribution, and potassium efficiency of sweet potato. Jiangsu Agric Sci, 2012, 28(2): 320–325 (in Chinese with English abstract) [7] Hammett L K, Miller C H, Swallow W H, Harden C. Influence of N source, N rate, and K rate on the yield and mineral concentration of sweet potato. J Am Soc Hort Sci, 1984, 109: 294–298 [8] 史春余, 王振林, 赵秉强, 郭风法, 余松烈. 钾营养对甘薯某些生理特性和产量形成的影响. 植物营养与肥料学报, 2002, 8: 81–85 Shi C Y, Wang Z L, Zhao B Q, Guo F F, Yu S L. Effect of potassium nutrition on some physiological characteristics and yield formation of sweet potato. Plant Nutr Fert Sci, 2002, 8: 81–85 (in Chinese with English abstract) [9] 李韦柳, 熊军, 唐秀桦, 闫海锋, 郑虚, 韦民政, 覃维治, 许娟. 施钾量对淀粉型甘薯徐薯26产量形成及钾利用的影响. 热带作物学报, 2015, 36: 1037–1042. Li W L, Xiong J, Tang X H, Yan H F, Zheng X, Wei M Z, Tan W Z, Xu J. Effects of potassium application rate on yield formation and potassium utilization efficiency of starchy Sweet potato variety Xushu 26. Chin J Trop Crops, 2015, 36: 1037–1042 (in Chinese with English abstract) [10] 王道中, 刘小平, 钟昆林, 郭志彬, 田茂尚. 安徽省砂姜黑土地区甘薯钾肥适宜用量研究. 作物杂志, 2014, (5): 109–112 Wang D Z, Liu X P, Zhong K l, Guo Z B, Tian M S. Study on Optimum potassium rate application on Sweet potato in Shajiang black soil in Anhui province. Crops, 2014, (5): 109–112 (in Chinese with English abstract) [11] Foloni J S S, Corte A J, Corte J R D N, Fabio R E, Carlos S T. Topdressing fertilization with nitrogen and potassium levels in sweet-potato. Semina Ciências Agrárias, 2013, 34: 117–126 [12] 宁运旺, 马洪波, 张辉, 许建平, 汪吉东, 许仙菊, 张永春. 氮、磷、钾对甘薯生长前期根系形态和植株内源激素含量的影响. 江苏农业学报, 2013, 29: 1326–1332 Ning Y W, Ma H B, Zhang H, Xu J P, Wang J D, Xu X J, Zhang Y C. Effects of nitrogen, phosphorus and potassium on root morphology and endogenous hormone contents of sweet potato at early growing stages. Jiangsu Agric Sci, 2013, 29: 1326–1332 (in Chinese with English abstract) [13] 齐鹤鹏, 安霞, 刘源, 朱国鹏, 汪吉东, 张永春. 施钾量对甘薯产量及钾素吸收利用的影响. 江苏农业学报, 2016, 32(1): 84–89 Qi H P, An X, Liu Y, Zhu G P, Wang J D, Zhang Y C. Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato genotypes. Jiangsu Agric Sci, 2016, 32(1): 84–89 (in Chinese with English abstract) [14] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 12–18 Bao S D. Analysis of Soil Aggregation. Beijing: China Agricultural Press, 2000. pp 12–18(in Chinese) [15] Hironaka K, Ishibashi K, Hakamada K. Effect of static loading on sugar contents and activities of invertase, UDP-glucose pyrophosphorylase and sucrose 6-phosphate synthase in potatoes during storage. Potato Res, 2001, 44: 33–39 [16] 李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31: 559–566 Li P M, Gao H Y, Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. J Plant Physiol Mol Biol, 2005, 31: 559–566 (in Chinese with English abstract) [17] Noh S A, Lee H S, Kim Y S, Paek K H, Shin J S, Bae J M. Down-regulation of the IbEXP1 gene enhanced storage root development in sweet potato. J Exp Bot, 2013, 64: 129–142 [18] 江苏省农业科学院和山东省农业科学院. 中国甘薯栽培学. 上海: 上海科学技术出版社, 1984. pp 41–45 Jiangsu Academy of Agricultural Sciences and Shandong Academy of Agricultural Sciences.Sweet Potato Cultivation, Shanghai: Shanghai science and Technology Press, 1984. pp 41–45 (in Chinese) [19] 邹春琴, 李振声, 李继云. 小麦对钾高效吸收的根系形态学和生理学特征. 植物营养与肥料学报, 2001, 7: 36–43 Zhou C Q, Li Z S, Li J Y. Study on difference in morpholofical and physiological characters of wheat varieties to potassium. Plant Nutr Fert Sci, 2001, 7: 36–43 (in Chinese with English abstract) [20] 潘艳花, 马忠明, 吕晓东, 杜少平, 薛亮. 不同供钾水平对西瓜幼苗生长和根系形态的影响. 中国生态农业学报, 2012, 20: 536–541 Pan Y H, Ma Z M, Lü X D, Du S P, Xue L. Effects of different potassium nutrition on growth and root morphological traits of watermelon seedling. Chin J Eco-Agric, 2012, 20: 536–541 (in Chinese with English abstract) [21] 宁运旺, 马洪波, 许仙菊, 汪吉东, 张辉, 许建平, 陈杰, 张永春. 氮磷钾缺乏对甘薯前期生长和养分吸收的影响. 中国农业科学, 2013, 46: 486–495 Ning Y W, Ma H B, Xu X J, Wang J D, Zhang H, Xu J P, Chen J, Zhang Y C. Effects of deficiency of N, P, or K on growth traits and nutrient uptakes of sweet potato at early growing stage. Sci Agric Sin, 2013, 46: 486–495 (in Chinese with English abstract) [22] 范伟国, 杨洪强. 平邑甜茶根系构型、养分吸收和新梢生长对根域形状的反应. 中国农业科学, 2014, 47: 3907–3913 Fan W G, Yang H Q. Response of root architecture, nutrients uptake and shoot growth of Malus hupehensis seedling to the shape of root zone. Sci Agric Sin, 2014, 47: 3907–3913 (in Chinese with English abstract) [23] Shcansker G, Srivastava A, Covindjee, Strasser R J. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol, 2003, 30: 785–796 [24] Yu G S, Liu B, Wang L F, Li M H, Liu Y. Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibition of photosystem II. Photosynth Res, 2006, 90: 67–78 [25] Strasser R J, Srivastava A, Covindjee. Ployphasic chlorophyll a fluorescence transients in plants and cyanobacteria. Photochem Photobiol, 1995, 61: 32–42 [26] 孙骏威, 李素芳, 付贤树, 奚辉; 王腾浩. 低钾对水稻不同叶位叶片光合特性及抗氧化系统的影响. 核农学报, 2006, 21: 404–408 Sun J W, Li S F, Fu X S, Xi H, Wang T H. Effects of low potassium stress on photosynthetic characteristics and antioxidant systems in different position leaves of rice plants. J Nucl Agric Sci, 2006, 21: 404–408 (in Chinese with English abstract) [27] Gilmore A M, Hazlett T L, Debrunner P G. Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation. Photochem Photobiol, 1996, 64: 552–563 [28] 孙骏威, 翁晓燕, 李峤, 邵建林. 缺钾对水稻不同品种光合和能量耗散的影响. 植物营养与肥料学报, 2007, 13: 577–584 Sun J W, Wen X Y, Li Q, Shao J L. Effects of potassium-deficiency on photosynthesis and energy dissipation in different rice cultivars. Plant Nutr Fert Sci, 2007, 13: 577–584 (in Chinese with English abstract) [29] Lalonde S, Wipf D, Frommer W B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink.. Ann Rev Plant Biol, 2004, 55: 341–372 [30] Turgeon R. The role of phloem loading reconsidered. Plant Physiol, 2010, 152:1817–1123 [31] 陈晓光, 史春余, 李洪民, 张爱君, 史新敏, 唐忠厚, 魏猛. 施钾时期对食用甘薯光合特性和块根淀粉积累的影响. 应用生态学报, 2013, 24: 759–763 Chen X G, Shi C Y, Li H M, Zhang A J, Shi X M, Tang Z H, Wei M. Effects of potassium fertilization period on photosynthetic characteristics and storage root starch accumulation of edible sweet potato. Chin J Appl Ecol, 2013, 24:759–763 (in Chinese with English abstract) [32] 王翠娟, 史春余, 刘娜, 刘双荣, 余新地. 结薯数差异显著的甘薯品种生长前期根系特性及根叶糖组分比较. 作物学报, 2016, 42: 131–140 Wang C J, Shi C Y, Liu N, Liu S R, Yu X D. Comparison of root characteristics and sugar components in root and leaf at early growth phase of sweet potato varieties with significant difference in valid storage root number. Acta Agron Sin, 2016, 42: 131–140 (in Chinese with English abstract) [33] 宁运旺, 马洪波, 张辉, 汪吉东, 许仙菊, 张永春. 甘薯源库关系建立、发展和平衡对氮肥用量的响应. 作物学报, 2015, 41: 432–439 Ning Y W, Ma H B, Zhang H, Zhang J D, Xu X J, Zhang Y C. Response of sweet potato in source-sink relationship establishment, expanding, and balance to nitrogen application rates, Acta Agron Sin, 2015, 41: 432–439 (in Chinese with English abstract) |
[1] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[2] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[3] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[4] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
[5] | 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459. |
[6] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[7] | 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187. |
[8] | 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319. |
[9] | 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500. |
[10] | 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162. |
[11] | 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137. |
[12] | 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207. |
[13] | 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471. |
[14] | 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869. |
[15] | 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658. |
|