欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (07): 954-966.doi: 10.3724/SP.J.1006.2017.00954

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花适宜机采相关性状的SSR标记关联分析及优异等位基因挖掘

王娟1,**,董承光1,2,**,刘丽1,孔宪辉1,王旭文1,余渝1,*   

  1. 1新疆农垦科学院棉花研究所 / 农业部西北内陆区棉花生物学与遗传育种重点实验室,新疆石河子 832000;2新疆农业大学农学院,新疆乌鲁木齐 830052
  • 收稿日期:2016-10-12 修回日期:2017-04-20 出版日期:2017-07-12 网络出版日期:2017-04-27
  • 通讯作者: 余渝, E-mail: xjyuyu021@sohu.com
  • 基金资助:

    本研究由新疆生产建设兵团博士资金项目(2013BB001), 新疆生产建设兵团重大科技项目(2016AA001-1)和国家自然科学基金项目(31260340)资助。

Association Analysis and Exploration of Elite Alleles of Mechanical Harvest-Related Traits with SSR Markers in Upland Cotton Cultivars (Gossypium hirsutum L.)

WANG Juan1,**,DONG Cheng-Guang1,2,**,LIU Li1,KONG Xian-Hui1,WANG Xu-Wen1,YU Yu1,*   

  1. 1 Cotton research Institute, Xinjiang Academy of Agricultural and Reclamation Science / Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Shihezi 832000, China; 2 College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
  • Received:2016-10-12 Revised:2017-04-20 Published:2017-07-12 Published online:2017-04-27
  • Contact: Yu Yu, E-mail: xjyuyu021@sohu.com
  • Supported by:

    This program was financially supported by the Doctorial Found of Xinjiang Production and Construction Corps (2013BB001) , the Key S&T projects of Xinjiang Production and Construction Corps (2016AA001-1), and the National Natural Science Foundation of China (31260340).

摘要:

棉花机械采收对品种的生育期、株型及对脱叶剂敏感度有较高的要求。本研究利用覆盖全基因组有多态性的214对SSR标记对118份含有一个或多个机采性状的种质资源的株高、始节高、始节位、第一果枝平均长度、生育期及脱叶率6个机采相关性状进行关联分析。利用Structure 2.3.1软件进行群体结构分析,并结合2年2点12个重复的田间表型数据,采用Tassel 5.0软件的混合线性模型MLM关联定位。结果检测到460个等位基因,涉及905个基因型,基因多样性指数平均为0.5151,PIC值平均为0.4587,基因多样性指数和PIC值都大于平均数的标记有99个,占总标记数的46.3%,说明该批SSR标记具有较多的等位变异数和较高的遗传多样性。群体结构分析将118份供试材料划分为4个亚群,结果显示各类群中材料与地理来源无对应关系。关联分析结果显示4种环境中,在显著条件下(P<0.05),共检测到124个与6个机采相关性状相关的位点,对表型变异解释率范围为2.23%~14.15%;其中在极显著条件下(P<0.01),共检测到20个与机采相关性状相关的位点,对表型变异解释率范围为4.84%~14.15%。基于本研究的结果,鉴定出典型的载体材料11份,分别为系7、金垦9号、Y11、豫棉18、AY-4、K2、朝阳棉2号、DZ22、中棉所43、C2、关农长早B14。以上发掘出的控制棉花适宜机采性状的优异等位基因及优异亲本资源,可为机采棉的分子辅助选择育种提供理论依据。

关键词: 棉花, 机采相关性状, 关联分析, 等位变异

Abstract:

Cotton suitable for mechanical harvest should have higher requirement in traits, for example, shorter growth period, ideal plant type and high sensitivity to defoliant. A total of 214 pairs of SSR with high polymorphism and uniform distribution on whole genome were used to scan polymorphism in 118 cotton varieties with one or more mechanical harvest-related traits. Molecular marker data and six phenotypic traits were analyzed by the method of MLM (mixed linear model) in Tassel 5.0 on the basis of population structure, analysis loci with elite allelic variation and typical materials carrying elite alleles were identified based on phenotypic effect values. We detected 460 alleles and 905 genotypes. The average genetic diversity index was 0.5151, and the average polymorphic information content (PIC) per marker was 0.4587. Ninety-nine markers achieved the aforementioned average values accounted for 46.3% of the total markers, shows that the SSR markers have more allelic variance and higher genetic diversity. All the 118 cotton varieties were divided into four subgroups by analysis of population genetic structure. There was no corresponding relation between each kind of group of materials and the geographical source. A total of 124 loci (P<0.05) and 20 loci (P<0.01) associated with mechanical harvest-related traits were detected by association analysis, with explained variance ranging from 2.23% to 14.15% and from 4.84% to 14.15% respectively. Based on the results of this study, we identified 11 typical materials, including Xi 7, Jinken 9, Y11, Yumian 18, AY-4, K2, Chaoyang 2, DZ22, Zhongmiansuo 43, C2, Guanrongchangzao B14. The elite alleles and resources can be useful for marker-assisted selection breeding.

Key words: Cotton, Mechanical harvest-related traits, Associate on analysis, Allelic variation

[1] 中国农业科学院棉花研究所. 中国棉花遗传育种学. 济南: 山东科学技术出版社, 2003. p 562 Cotton Research Institute, the Chinese Academy of Agricultural Sciences. Genetics and Breeding of Cotton in China. Jinan: Shandong Science&Technology Press, 2003. p 562 (in Chinese) [2] Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics, 2007, 176: 527–541 [3] Zhao L, Lyu Y D, Cai C P, Tong X C, Chen X D, Zhang W, Du H, Guo X H, Guo W Z. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics, 2012, 13: 1–17 [4] 范术丽, 喻树迅, 宋美珍, 原日红. 短季棉早熟性的分子标记及QTL定位. 棉花学报, 2006, 18: 135–139 Fan S L, Yu S X, Song M Z, Yuan R H. Construction of molecular linkage map and QTL mapping for earliness in short-season cotton. Cotton Sci, 2006, 18: 135–139 (in Chinese with English abstract) [5] 张先亮, 王坤波, 宋国立, 刘方, 黎绍惠, 王春英, 张香娣, 王玉红. 陆地棉重组近交系“中G6”QTL的初步定位. 棉花学报, 2008, 20: 192–197 Zhang X L, Wang K B, Song G L, Liu F, Li S H, Wang C Y, Zhang X D, Wang Y H. Primary QTL mapping of upland cotton RIL CRI-G6 by SSR marker. Cotton Sci, 2008, 20: 192–197 (in Chinese with English abstract) [6] Chen H, Qian N, Guo W Z, Song Q P, Li B C, Deng F J, Dong C G, Zhang T Z. Using three selected overlapping RILs to fine-map the yield component QTL on Chro.D8 in Upland cotton. Euphytica, 2010, 76: 321–329 [7] Liu R Z, Ai N J, Zhu X X, Liu F J, Guo W Z, Zhang T Z. Genetic analysis of plant height using two immortalized populations of “CRI12?×?J8891” in Gossypium hirsutum L. Euphytica, 2014, 196: 51–61 [8] Ning Z Y, Chen H, Mei H X, Zhang T Z. Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica, 2014, 195: 143–156 [9] 努斯热提?吾斯曼, 喻树迅, 范术丽, 庞朝友. 机采棉主要农艺性状相关性分析和QTL定位. 新疆农业科学, 2012, 49: 791–795 Nusurat O, Yu S X, Fan S L, Pang C Y. Correlation of agronomic characters and QTL mapping in mechanical harvest cotton(Gossypum hirsutum L.). Xinjiang Agric Sci, 2012, 49: 791–795 (in Chinese with English abstract) [10] Andersen J R, Zein I, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Lübberstedt T. High levels of linkage disequilibrium and associations with forage quality at phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds. Theor Appl Gent, 2007, 114: 307–319 [11] Szalma S J, Buckler I V E S, Snook M E, McMullen M D. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet, 2005, 110: 1324–1333 [12] Wang J, McClean P E, Lee R, Goos R J, Helms T. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet, 2008, 116: 777–787 [13] Niu Y, Xu Y, Liu X F, Yang S X, Wei S P, Xie F T, Zhang Y M. Association mapping for seed size and shape traits in soybean cultivars. Mol Breed, 2013, 31: 785–794 [14] Patel J S, Mamidi S, Bonman J M, Adhikari T B. Identification of QTL in spring wheat associated with resistance to a novel isolate of Pyrenophora tritici-repentis. Crop Sci, 2013, 53: 842–852 [15] Narayanan S, Vara Prasad P V, Shroyer K, Gill B S, Fritz A. Characterization of a spring wheat association mapping panel for root traits. Agron J, 2014, 106: 1593–1604 [16] Malysheva-Otto L V, Ganal M W, Roder M S. Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet, 2006, 7: 6 [17] Liu G Z, Mei H X, Wang S, Li X H, Zhu X F, Zhang T Z. Association mapping of seed oil and protein contents in upland cotton. Euphytica, 2015, 205: 637–645 [18] Li C Q, Zhang J B, Hu G H, Fu Y Z, Wang Q L. Association mapping and favorable allele mining for node of first fruiting/sympodial branch and its height in upland cotton (Gossypium hirsutum L.). Euphytica, 2016, 210: 57–68 [19] Li C Q, Ai N J, Zhu Y J, Wang Y Q, Chen X D, Li F, Hu Q Y, Wang Q L Association mapping and favorable allele exploration for plant architecture traits in Upland cotton (Gossypium hirsutum L.) accessions. J Agric Sci, 2016, 154: 567–583 [20] 聂新辉, 尤春源, 鲍健, 李晓方, 惠慧, 刘洪亮, 秦江鸿, 林忠旭. 基于关联分析的新陆早棉花品种农艺和纤维品质性状优异等位基因挖掘. 中国农业科学, 2015, 48: 2891–2910 Nie X H, You C Y, Bao J, Li X F, Hui H, Liu H L, Qin J H, Lin Z X. Exploration of elite alleles of agronomic and fiber quality traits in Xinluzao cotton varieties by association analysis. Sci Agric Sin, 2015, 48: 2891–2910 (in Chinese with English abstract) [21] Mei H X, Zhu X F, Zhang T Z. Favorable QTL alleles for yield and its components identified by association mapping in Chinese upland cotton cultivars. PLoS One, 2013, 8:e82193 [22] Qin H D, Chen M, Yi X D, Bie S, Zhang C, Zhang Y C, Lan J Y, Meng Y Y, Yuan Y L, Jiao C H. Identification of associated SSR markers for yield component and fiber quality traits based on frame map and Upland cotton collections. PLoS One, 2015, 10: e0118073 [23] Cai C P, Ye W X, Zhang T Z, Guo W Z. Association analysis of fiber quality traits and exploration of elite alleles in upland cotton cultivars/accessions (Gossypium hirsutum L.). J Integr Plant Biol, 2014, 56: 51–62 [24] Abdurakhmonov I Y, Kohel R J, Yu J Z, Pepper A E, Abdullaev A A, Kushanov F N, Salakhutdinov I B, Buriev Z T, Ssha S, Scheffler B E. Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics, 2008, 92: 478–487 [25] Zhao Y, Wang H, Chen W, Li Y H. Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS One, 2014, 9: e86308 [26] 杜雄明, 周忠丽. 棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005 Du X M, Zhou Z L . Descriptors and data standard for cotton (Gossypium spp.). Beijing: China Agriculture Press, 2005 (in Chinese) [27] 钱能. 陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析. 南京农业大学博士学位论文, 江苏南京, 2009 Qian N. Genetic Diversity and Association of Gene (QTL) of Breeding Target Traits of Upland Cotton. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2009 (in Chinese with English abstract) [28] Song X L, Zhang T Z. Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci, 2009, 177: 317–323 [29] 薛艳, 张新宇, 沙红, 李雪源, 孙杰, 李保成. 新疆早熟棉品种SSR指纹图谱构建与品种鉴别. 棉花学报, 2010, 22: 360–366 Xue Y, Zhang X Y, Sha H, Li X Y, Sun J, Li B C. Construction of fingerprinting map based on SSR and identification of cultivars for earliness cultivars in upland cotton in Xinjiang. Cotton Sci, 2010, 22: 360–366 (in Chinese with English abstract) [30] Sun F D, Zhang J H, Wang S F, Gong W K, Shi Y Z, Liu A Y, Li J W, Gong J W, Shang H H, Yuan Y L. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed, 2012, 30: 569–582 [31] 艾先涛, 梁亚军, 沙红, 王俊铎, 郑巨云, 吐尔逊江, 多力坤, 李雪源, 华金平. 新疆自育陆地棉品种SSR遗传多样性分析. 作物学报, 2014, 40: 369–379 Ai X T, Liang Y J, Sha H, Wang J Z, Zheng J Y, Tu E X J, Duo L K, Li X Y, Hua J P. Genetic diversity analysis on local upland cotton cultivars in Xinjiang based on SSR markers. Acta Agron Sin, 2014, 40: 369–379 (in Chinese with English abstract) [32] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP and PCR analysis. Plant Mol Biol, 1993, 11: 122–127 [33] 张军, 武耀廷, 郭旺珍等. 棉花微卫星标记的PAGE/银染快速检测, 棉花学报, 2000, 12: 267–269 Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Sci, 2000, 12: 267–269 (in Chinese with English abstract) [34] Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128–2129 [35] Pritchard J K, Wen X, Falush D. Documentation for structure software: version 2.3.http://pritch.bsd.uchicago.edu/structure.html, 2009 [36] Evanno G, Regnauts S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol, 2005, 14: 2611–2620 [37] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635 [38] Abdurakhmonov I Y, Saha S, Jenkins J N, Buriev Z T, Shermatov S E, Scheffler B E, Pepper A E, Yu J Z, Kohel R J, Abdukarimov A. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica, 2009, 136: 401–417 [39] 文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析II.优异等位变异的发掘. 作物学报, 2008, 34: 1339?1349 Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: II. Exploration of elite alleles. Acta Agron Sin, 2008, 34: 1339–1349 (in Chinese with English abstract) [40] Evanno G, Regnauts S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol, 2005, 14: 2611–2620 [41] Yang X H, Gao S B, Xu S T, Zhang Z X, Prasanna B M, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed, 2011, 28: 511–526 [42] Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations. Am J Human Genet, 2000, 67: 170–181 [43] Zhao K, Aranzana M J, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M. An Arabidopsis example of association mapping in structured samples. PLoS Genet, 2007, 3: 0071–0082

[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[6] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[7] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[8] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[11] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[12] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[13] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[14] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[15] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!