欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (10): 1489-1498.doi: 10.3724/SP.J.1006.2017.01489

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

活性炭促进玉米幼胚离体培养幼苗生长与发育的转录组分析

王金萍1,2,孙果忠2,*,王海波2,*   

  1. 1河北农业大学农学院, 河北保定 071001;2河北省农林科学院遗传生理研究所/河北省植物转基因中心, 河北石家庄 050051
  • 收稿日期:2017-03-21 修回日期:2017-04-20 出版日期:2017-10-12 网络出版日期:2017-05-08
  • 通讯作者: 孙果忠, E-mail: 13933023804@163.com; 王海波, E-mail: nkywanghb@163.com
  • 基金资助:

    本研究由河北省财政专项(2009055001, F15R25)资助。

Transcriptome Analysis of Promotive Effects of Active Carbon on Growth and Development of Maize Seedlings from in vitro Cultured Immature Embryos

WANG Jin-Ping1,2,SUN Guo-Zhong2,*,WANG Hai-Bo2,*   

  1. 1 College of Agriculture, Agricultural University of Hebei, Baoding 071001, China; 2 Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
  • Received:2017-03-21 Revised:2017-04-20 Published:2017-10-12 Published online:2017-05-08
  • Contact: Sun Guozhong, E-mail: 13933023804@163.com;Wang Haibo, E-mail: nkywanghb@163.com
  • Supported by:

    This study was supported by the Financial Fund Program of Hebei Province (2009055001, F15R25).

摘要:

以玉米自交系昌7-2为试材, 比较了14 d龄幼胚在MS和MSA(MS加活性炭)培养基上离体培养9 d的幼苗生长情况, 并利用转录组测序技术分析了2种培养基上的玉米幼苗地上部和地下部的基因表达差异。结果表明, 活性炭可以显著促进玉米幼苗的生长与发育。活性炭主要影响地下部基因表达。加入活性炭后, 幼苗地上部表达上调的基因有1612个, 下调的基因有530个;幼苗地下部表达上调的基因有69个, 下调的基因有78个。GO功能显著性分析表明, 地下部差异表达基因(DEGs)主要涉及DNA包装、DNA包装复合体和水解酶活性, 地上部DEGs主要涉及脂类代谢、胞外区和过氧化物酶活性。KEGG富集分析表明, 地下部DEGs主要涉及能量、碳水化合物、脂类和氨基酸代谢, 以及细胞周期和植物激素转导途径;地上部DEGs主要涉及泛醌和其他萜-醌类物质合成途径。活性炭促进细胞周期途径中的关键基因(CYC、CDH1、MCM3、PCNA2和BUBR1)、生长素信号传导基因(Aux/IAA)以及细胞色素基因(CYP450)显著上调表达。利用实时荧光定量PCR (qRT-PCR)验证了10个DEGs的表达模式与转录组测序结果一致, 证实了转录组数据与分析的可靠性。

关键词: 玉米, 幼胚, 活性炭, 转录组

Abstract:

Immature embryos from the maize inbred line Chang 7-2 were collected at 14 days after pollination, and cultured on MS or MSA medium (MS medium plus active carbon) for nine days at 24°C. Active carbon significantly accelerated the growth and development of maize seedlings from cultured immature embryos. Using RNA-seq technique, the genes involved in the growth promotive effects of active carbon were analyzed. The presence of active carbon in the medium affected the gene expression in seedlings. Number of up- and down-regulated genes was 1612 and 530 in roots, as well as 69 and 78 in shoots, respectively, indicating that active carbon mainly affects gene expression in roots. GO enrichment analysis showed that differentially expressed genes (DEGs) in roots were mainly involved in DNA packaging, DNA packaging complex and hydrolase activity; the DEGs in shoots were mainly involved in lipid metabolic process, extracellular region and peroxidase activity. The KEGG enrichment analysis showed that the DEGs in roots were significantly associated with energy metabolism, carbohydrate metabolism, lipid metabolism, amino acid metabolism, cell cycle and plant hormone signal transduction. The DEGs in shoots were significantly associated with biosynthesis of ubiquinone and other terpenoid-quinone compounds. Several key genes involved in the cell cycle pathway (i.e., CYC, CDH1, MCM3, PCNA2, and BUB1), signal transduction of auxin (Aux/IAA) and cytochrome function (CYP450 oxidase) were significantly up-regulated by active carbon. Ten DEGs were confirmed by Real-time quantitative PCR assay, suggesting that our data and analysis of transcriptome sequencing are reliable.

Key words: Maize, Immature embryo, Active carbon, Transcriptome

[1]王海波, 王彦霞, 赵和. 如何加快作物遗传改良的速度. 河北农业科学, 2003, (7): 50–56 Wang H B, WangY X, Zhao H. How to accelerate the process of plant genetic modification. J Hebei Agric Sci, 2003, 7: 50–56 (in Chinese with English abstract) [2]Forster B P, Till B J, Ghanim A M A, Huynh H O A, Burstmayr H, Caligari P D S. Accelerated plant breeding. CAB Rev, 2014, 9: 1–16 [3]Yao Y, Zhang P, Wang H B, Lu Z Y, Liu C J, Liu H, Yan G J. How to advance up to seven generations of canola (Brassica napus L.) per annum for the production of pure line populations. Euphytica, 2016, 209: 113–119 [4]Liu H, Zwer P, Wang H B, Liu C J, Lu Z Y, Wang Y X, Yan G J. A fast generation cycling system for oat and triticale breeding. Plant Breed, 2016, 135: 574–579 [5]Bewley J D. Seed germination and dormancy. Plant cell, 1997, 9: 1055–1066 [6]Bove J, Jullien M, Grappin P. Functional genomics in the study of seed germination. Genome Biol, 2002, 3: 1002.1–1002.5 [7]Galland M, Huguet R, Arc E, Cueff G, Job D, Rajjou L. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Mol Cell Proteomics, 2014, 13: 252–268 [8]Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D. The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol, 2004, 134: 1598–1613 [9]Abraham Z, Fernández R I, Martinez M, Diaz I, Carbonero P, Vicente-Carbajosa J. A developmental switch of gene expression in the barley seed mediated by HvVP1 (Viviparous1) and HvGAMYB interactions. Plant Physiol, 2016, 170: 2146–2158 [10]Miransari M, Smith D L. Plant hormones and seed germination. Environ Exp Bot, 2014, 99: 110–121 [11]Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol, 2010, 51: 1821–1839 [12]Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. J Exp Bot, 2011, 62: 3289–3309 [13]Sun T. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol, 2010, 154: 567–570 [14]Pan M J, van Staden J. The use of charcoal in in vitro culture: a review. Plant Growth Regul, 1998, 26: 155–163 [15]Thomas T D. The role of activated charcoal in plant tissue culture. Biotechnol Adv, 2008, 26: 618–631 [16]Mittal P, Devi R, Gosal S S. Effect of genotypes and activated charcoal on high frequency in vitro plant regeneration in sugarcane. Ind J Biotechnol, 2016, 15: 261–265 [17]Fridborg G, Pedersén M, Landstr?m LE, Eriksson T. The effect of activated charcoal on tissue cultures: adsorption of metabolites inhibiting morphogenesis. Physiol Plant, 1978, 43: 104–106 [18]Manchanda P, Gosal S S. Effect of activated charcoal, carbon sources and gelling agents on direct somatic embryogenesis and regeneration in sugarcane via leaf roll segments. Sugar Tech, 2012, 14: 168–173 [19]Nguyen T V, Thu T T, Claeys M, Angenon G. Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell Tissue Organ Cult, 2007, 91: 155–164 [20]Ebert A, Taylor F, Blake J. Changes of 6-benzylaminopurine and 2, 4-dichlorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell Tissue Organ Cult, 1993, 33: 157–162 [21]Ebert A, Taylor H F. Assessment of the changes of 2, 4-dichlorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell Tissue Organ Cult, 1990, 20: 165–172 [22]Halhouli K A, Darwish N A, Al-Dhoon N M. Effects of pH and inorganic salts on the adsorption of phenol from aqueous systems on activated decolorizing charcoal. Separat Sci Technol, 1995, 30: 3313–3324 [23]Nissen S J, Sutter E G. Stability of IAA and IBA in nutrient medium to several tissue culture procedures. Hortscience, 1990, 25: 800–802 [24]Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10: 57–63 [25]Trapnell C, Hendrickson D G, Sauvageau M, Goff L, Rinn J, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol, 2013, 31: 46–53 [26]Costa V, Angelini C, De F I, Ciccodicola A. Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol, 2010, 2010: 853916 [27]Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473–497 [28]Aken B L, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet J, Billis K, García Girón C, Hourlier T, Howe K, H?h?ri A, Kokocinski F, Martin F J, Murphy D N, Nag R, Ruffier M, Schuster M, Tang Y A, Vogel J H, White S, Zadissa A, Flicek P, Searle S M. The Ensembl gene annotation system. Database (Oxford), 2016, 2016: baw093 [29]Trapnell C, Pachter L, Salzberg S L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009, 25: 1105–1111 [30]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S, Rinn J, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols, 2012, 7: 562–578 [31]Anders S, Pyl P T, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31: 166–169 [32]Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550 [33]Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010, 26: 136–138 [34]Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene Ontology: tool for the unification of biology. Nat Genet, 2000, 25: 25–29 [35]Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res, 2000, 28: 27–30 [36]Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucl Acids Res, 2014, 42 (database issue): D199–D205 [37]Jenuwein T, Allis C D. Translating the histone code. Science, 2001, 293: 1074–1080 [38]Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128: 693–705 [39]Baumann K. Genome stability: Cyclin’on mRNA. Nat Rev Mol Cell Biol, 2016, 17: 676–677 [40]Maga G, Hübscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci, 2003, 116: 3051–3060 [41]Georgescu R, Langston L, O'Donnell M. A proposal: Evolution of PCNA’s role as a marker of newly replicated DNA. DNA Repair, 2015, 29: 4–15 [42]Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot, 2011, 107: 1127–1140 [43]Labib K, Tercero J A, Diffley J F X. Uninterrupted MCM2-7 function required for DNA replication fork progression. Science, 2000, 288: 1643–1647 [44]Wei L, Zhao X. A new MCM modification cycle regulates DNA replication initiation. Nat Struct Mol Biol, 2016, 23: 209–216 [45]Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser M, Benfey P N. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 2000, 101: 555–567 [46]Grimplet J, Agudelo-Romero P, Teixeira R T, Teixeira R T, Martinez-Zapater J M, Fortes A M. Structural and functional analysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses. Front Plant Sci, 2016, 7: 353 [47]Woodward A W, Bartel B. Auxin: regulation, action, and interaction. Ann Bot, 2005, 95: 707–735 [48]Zhao Y. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol, 2010, 61: 49–64 [49]Abel S, Theologis A. Early genes and auxin action. Plant Physiol, 1996, 111: 9–17 [50]Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot, 2011, 62: 3321–3338 [51]Janda M, Ruelland E. Magical mystery tour: Salicylic acid signalling. Environ Exp Bot, 2015, 114: 117–128 [52]Johnson C, Boden E and Arias J. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell, 2003, 15: 1846–1858 [53]Bernhardt R. Cytochromes P450 as versatile biocatalysts. J Biotechnol, 2006, 124: 128–145
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!