欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1596-1602.doi: 10.3724/SP.J.1006.2017.01596

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用MR1523/苏御糯F2:3群体定位水稻抗灰飞虱QTL

仲杰1,温培正1,孙志广1,肖世卓1,胡金龙1,张乐1,江玲1,程遐年1,刘裕强1,*,万建民1,2   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室,江苏南京 210095;2中国农业科学院作物科学研究所,北京 100081
  • 收稿日期:2017-04-18 修回日期:2017-07-23 出版日期:2017-11-12 网络出版日期:2017-08-11
  • 通讯作者: 刘裕强, E-mail: yql@njau.edu.cn
  • 基金资助:

    本研究由国家重点研发计划项目(2017YFD0100400-01),国家自然科学基金项目(31522039, 31471470)和江苏省自然科学基金项目(BK20150026)资助。

Identification of QTLs Conferring Small Brown Planthopper Resistance in Rice (Oryza sativa L.) Using MR1523/Suyunuo F2:3 Population

ZHONG Jie1,WEN Pei-Zheng1,SUN Zhi-Guang1,XIAO Shi-Zhuo1,HU Jin-Long1,ZHANG Le1,JIANG Ling1,CHENG Xia-Nian1,LIU Yu-Qiang1,*,WAN Jian-Min1,2   

  1. 1 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2017-04-18 Revised:2017-07-23 Published:2017-11-12 Published online:2017-08-11
  • Contact: 刘裕强, E-mail: yql@njau.edu.cn
  • Supported by:

    This study was supported by the National Key R&D Program of China (2017YFD0100400-01), National Natural Science Foundation of China (31522039, 31471470), and the Natural Science Foundation of Jiangsu Province of China (BK20150026)

摘要:

灰飞虱是我国水稻生产的主要害虫之一,不仅直接取食危害水稻,还是水稻主要病毒病的传播介体,严重制约水稻生产。籼稻品种MR1523对灰飞虱表现较强的排趋性。为发掘抗灰飞虱新基因,本研究利用MR1523与感虫粳稻品种苏御糯构建了一个包含200个家系的F2:3分离群体,进行灰飞虱抗性鉴定。并利用120对均匀分布在水稻12条染色体的多态性SSR标记,构建了全基因组连锁图谱,进行抗灰飞虱QTL定位。结果分别在水稻第2、第5和第6染色体上检测到Qsbph2、Qsbph5a、Qsbph5b和Qsbph6 4个抗灰飞虱QTLs,分别位于分子标记RM526–RM3763、RM17804–RM13、RM574–RM169和RM190–RM510之间,LOD值分别为2.14、3.13、3.23和2.35,贡献率分别为12.0%、14.7%、17.4%和14.1%,各QTL的抗性等位基因效应均来自抗虫亲本MR1523。该结果为后续抗灰飞虱基因的精细定位及通过分子标记辅助选择培育抗灰飞虱水稻新品种奠定了基础。

关键词: 水稻, 灰飞虱, 抗性, 数量性状基因座

Abstract:

The small brown planthopper (SBPH), Laodelphax striatellus Fallén (Homoptera: Delphacide), is one of the most destructive insect pests in rice (Oryza sativa L.) production. SBPH not only causes direct damage by sucking plant sap but also transmits the main viral diseases, which seriously threatens the safety of rice production. An indica cultivar MR1523 displayed strong antixenosis against SBPH. In order to identify SBPH resistance genes, a F2:3 population derived from a cross between MR1523 and susceptible japonica cultivar Suyunuo was constructed, and then evaluated for SBPH resistance. Moreover, 120 polymorphic SSR markers between the parents uniformly distributed on 12 chromosomes of rice were used to construct the molecular linkage map, and then conducted the QTL assay for SBPH resistance. A total of four QTLs on chromosome 2, 5, and 6, Qsbph2, Qsbph5a, Qsbph5b, and Qsbph6 were detected in the interval of RM526–RM3763, RM17804–RM13, RM574–RM169, and RM190–RM510, with LOD score of 2.14, 3.13, 3.23, and 2.35, and explained the phenotypic variance of 12.0%, 14.7%, 17.4%, and 14.1% , respectively. All of the QTLs came from the resistance parent MR1523. The results in this study lay a foundation for furtherly fine mapping SBPH resistance and developing new cultivars by molecular marker assisted selection in the future.

Key words: Rice (Oryza sativa L.), Small brown planthopper (SBPH);Resistance, Quantitative trait locus (QTL)

[1] Brar D S, Virk P S, Jena K K, Khush G S. Breeding for resistance to planthoppers in rice. In: Heong K L, Hardy B, eds. Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Los Ba?os, Philippines, 2009. pp 401–428 [2] 邰德良, 李瑛, 梅爱中, 丁志宽, 王春兰, 仲凤翔. 2004年稻田灰飞虱重发原因分析与控制对策. 中国植保导刊, 2005, 25(3): 29–31 Tai D L, Li Y, Mei A Z, Ding Z K, Wang C L, Zhong F X. Analysis and control measures of rice brown planthopper occurrence in 2004. China Plant Prot, 2005, 25(3): 29–31 (in Chinese) [3] 顾伯良, 薛萍霞, 施文贤, 周丽花. 水稻灰飞虱转移穗部为害及其对产量损失的观察. 中国植保导刊, 2005, 25(5): 7–8 Gu B L, Xue P X, Shi W X, Zhou L H. Observation on rice spikes infected by Laodelphax striatellus and rice yield loss. China Plant Prot, 2005, 25(5): 7–8 (in Chinese with English abstract) [4] 兰莹, 周彤, 范永坚, 周益军. 水稻对灰飞虱传播的两种病毒病抗性的研究进展. 江苏农业学报, 2012, 28: 1480–1486 Lan Y, Zhou T, Fan Y J, Zhou Y J. Advances in rice resistance to two virus diseases carried by small brown planthopper. Jiangsu J Agric Sci, 2012, 28: 1480–1486 (in Chinese with English abstract) [5] Duan C X, Wan J M, Zhai H Q, Chen Q, Wang J K, Su N, Lei C L. Quantitative trait loci mapping of resistance to Laodelphax striatellus (Homoptera: Delphacidae) in rice using recombinant in bredlines. J Econ Entomol, 2007, 100: 1450–1455 [6] 王宝祥, 江玲, 陈亮明, 卢百关, 王琦, 黎光泉, 樊继伟, 程遐年, 翟虎渠, 徐大勇, 万建民. 水稻黑条矮缩病抗性资源的筛选和抗性QTL的定位. 作物学报, 2010, 36: 1258–1264 Wang B X, Jiang L, Chen L M, Lu B G, Wang Q, Tuyen L Q, Fan J W, Cheng X N, Zhai H Q, Xu D Y, Wan J M. Screening of rice resources against rice black-streaked dwarf virus and mapping of resistant QTL. Acta Agron Sini, 2010, 36: 1258–1264 (in Chinese with English abstract) [7] 段灿星, 张世贤, 陈青, 程治军, 翟虎渠, 万建民. 水稻种质资源抗灰飞虱评价及抗性机制分析. 中国水稻科学, 2007, 21: 425–430 Duan C X, Zhang S X, Chen Q, Chen Z J, Zhai H Q, Wan J M. Evaluation of rice germplasm for resistance to the small brown planthopper and analysis on resistance mechanism. Chin J Rice Sci, 2007, 21: 425–430 (in Chinese with English abstract) [8] Sone S, Hattori Y, Tsuboi S, Otsu Y. Difference in susceptibility to imidacloprid of the populations of the small brown planthopper, Laodelphax striatellus Fallén. J Pestic Sci, 1995, 20: 541–543 [9] Endo S, Tsurumachi M. Insecticide resistance and insensitive acetylcholinesterase in small brown planthopper, Laodelphax striatellus. J Pestic Sci, 2000, 25: 395–397 [10] Endo S, Takahashi A, Tsurumachi M. Insecticide susceptibility of the small brown planthopper, Laodelphax striatellus Fallén (Homoptera: Delphacidae), collected from East Asia. Appl Entomol Zool, 2002, 37(1): 79–84 [11] 段灿星, 程治军, 雷才林, 翟虎渠, 万建民. 利用Mudgo/武育粳3号F2群体分析水稻抗灰飞虱QTL. 作物学报, 2009, 35: 388–394 Duan C X, Cheng Z J, Lei C L, Zhai H Q, Wan J M. Analysis of QTLs for resistance to small brown planthopper in rice using an F2 population from across between Mudgo and Wuyujing 3. Acta Agron Sini, 2009, 35: 388–394 (in Chinese with English abstract) [12] Duan C X, Su N, Cheng Z J, Lei C L, Wang J L, Zhai H Q, Wan J M. QTL analysis for the resistance to small brown planthopper (Laodelphax striatellus Fallén) in rice using back cross inbred lines. Plant Breed, 2010, 129: 63–67 [13] 朱文银, 朱其松, 张洪瑞, 陈峰, 陈博聪, 杨连群. 不同类型水稻品种对灰飞虱抗性的初步鉴定. 江苏农业科学, 2012, 40(7): 110–111 Zhu W X, Zhu Q S, Zhang H R, Chen F, Chen B C, Yang L Q. Preliminary identification of resistance to brown planthopper in different rice varieties. J Agric Sci Jiangsu, 2012, 40(7): 110–111 (in Chinese) [14] 孙黛珍, 江玲, 张迎信, 程遐年, 王春明, 翟虎渠, 万建民. 8个水稻品种的条纹叶枯病抗性特征. 中国水稻科学, 2006, 20: 219–222 Sun D Z, Jiang L, Zhang Y X, Cheng X N, Wang C M, Zhai H Q, Wan J M. Resistance to rice stripe in eight rice varieties. Chin J Rice Sci, 2006, 20: 219–222 (in Chinese with English abstract) [15] 刘芳, 宋英, 包善微, 卢海燕, 祝树德, 梁国华. 水稻品种对灰飞虱的抗性及其机制. 植物保护学报, 2007, 34: 449–454 Liu F, Song Y, Bao S W, Lu H Y, Zhu S D, Liang G H. Resistance to small brown planthopper and its mechanism in rice varieties. Acta Phyto Sin, 2007, 34: 449–454 (in Chinese with English abstract) [16] IRRI. Standard evaluation systems for rice. Manila, Philippines: IRRI, 1988 [17] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283 [18] Sarao P S, Bentur J S. Antixenosis and tolerance of rice genotypes against brown planthopper. Rice Sci, 2016, 23: 96–103 [19] 程正新, 黄所生, 黄凤宽, 吴碧球, 韦素美. 水稻品种资源抗白背飞虱核心种质的研究. 中国农学通报, 2014(4): 288–292 Cheng Z X, Huang S S, Huang F K, Wu B Q, Wei S M. Studies on core collection of rice germplasms for resistance to white-backed planthopper. Chin Agric Sci Bull, 2014: 288–292 (in Chinese with English abstract) [20] 邓伟, 胡兰香, 陈红萍, 陈明亮, 肖叶青. 水稻抗白背飞虱研究进展. 江西农业学报, 2012, 24(1): 91–97 Deng W, Hu L X, Chen H P, Chen M L, Xiao Y Q. Research progress in resistance of rice to Sogatella furcifera. Acta Agric Jiangxi, 2012, 24: 91–97 (in Chinese with English abstract) [21] Himabindu K, Suneetha K, Sama V S A K, Bentur J S. A new rice gall midge resistance gene in the breeding line CR57-MR1523, mapping with flanking markers and development of NILs. Euphytica, 2010, 174(2): 179–187 [22] Yang L, Zhang W L. Genetic and biochemical mechanisms of rice resistance to planthopper. Plant Cell Rep, 2016, 35: 1559–1572 [23] Tuyen L Q, Liu Y Q, Jiang L, Wang B X, Wang Q, Hanh T T T, Wan J M. Identification of quantitative trait loci associated with small brown planthopper (Laodelphax striatellusFallén) resistance in rice (Oryza sativa L.). Hereditas, 2012, 149: 16–23 [24] Wang Q, Liu Y Q, Hu J L, Zhang Y X, Xie K, Wang B X, Tuyen L Q, Song Z Q, Wu H, Liu Y L, Jiang L, Liu SJ, Cheng X N, Wang C M, Zhai H Q, Wan J M. Detection of quantitative trait loci (QTLs) for resistances to small brown planthopper and rice stripe virus in rice using recombinant inbred lines. Int J Mol Sci, 2013, 14: 8406–8421 [25] Zhang W L, Dong Y, Yang L, Ma B J, Ma R R, Huang F D, Wang C C, Hu H T, Li C S, Yan C Q, Chen J P. Small brown planthopper resistance loci in wild rice (Oryza officinalis). Mol Genet Genom, 2014, 289: 373–382

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!