欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1603-1610.doi: 10.3724/SP.J.1006.2017.01603

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

丙环唑对玉米幼苗生长的调控及其相关机制

郝岭,邢嘉鹏,段留生,张明才*,李召虎   

  1. 植物生长调节剂教育部工程研究中心 / 中国农业大学农学与生物技术学院农学系,北京 100193
  • 收稿日期:2017-03-07 修回日期:2017-05-10 出版日期:2017-11-12 网络出版日期:2017-06-09
  • 通讯作者: 张明才, E-mail: zmc1214@163.com, Tel: 010-62733049
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目(2011-G19)资助。

Growth Regulation and the Mechanism of Propiconazole in Maize Seedlings

HAO Ling,XING Jia-Peng,DUAN Liu-Sheng,ZHANG Ming-Cai*,LI Zhao-Hu   

  1. Engineering Research Center of Plant Growth Regulator, Ministry of Education / Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2017-03-07 Revised:2017-05-10 Published:2017-11-12 Published online:2017-06-09
  • Contact: 张明才, E-mail: zmc1214@163.com, Tel: 010-62733049
  • Supported by:

    This study was supported by the Introduction of International Advanced Agricultural Science and Technology Program (948 Program, 2011-G19).

摘要:

丙环唑(propiconazole,简称Pcz)作为一种杀菌剂被广泛应用于作物生产,它同时具有调节作物生长发育的作用,但关于丙环唑在玉米上的应用研究较少。本研究以玉米品种郑单958为材料,研究丙环唑(Pcz)对玉米苗期植株生长、细胞形态和激素信号的影响。结果表明,Pcz处理显著抑制玉米中胚轴与胚芽鞘的生长,降低株高,缩短叶片和叶鞘长度,减小叶夹角,同时显著抑制叶片和叶鞘细胞的纵向伸长,促使叶枕细胞排列由疏松变为紧密;Pcz处理显著降低玉米中赤霉素(GA)的含量,下调GA3ox1基因的表达,上调GA钝化酶基因GA2ox5和GA2ox8表达,而GA合成酶基因GA20ox1的表达呈现先上调后下调模式;Pcz处理显著降低油菜素内酯(BR)含量,但BR合成基因CPD和DWF4的表达上调,可能是由于反馈调节。此外,Pcz处理下调扩张蛋白基因EXPA4、EXPA5和木葡聚糖内糖基转移酶/水解酶基因XTH1、XET1的表达。综上所述,Pcz处理调节GA和BR信号转导途径,抑制GA和BR在植株内积累,调控扩张蛋白、木葡聚糖内糖基转移酶/水解酶基因表达,操纵细胞生长,有效调控株型。

关键词: 玉米, 丙环唑, 油菜素内酯, 株型, 细胞形态

Abstract:

Propiconazole (Pcz) has been widely used as fungistat in crop production. Meanwhile, Pcz can be used as plant growth regulator to influence plant growth. There is less study on the application of Pcz in maize. The present experiment using maize variety Zhengdan 958 was conducted to study the effect of Pcz on maize seedling growth, cell morphology and hormone signal. Pcz treatment inhibited the growth of mesocotyl and coleoptile, reduced plant height, shortened the length of sheath and leaf, and decreased leaf angle significantly. At the same time, longitudinal growth of sheath and leaf was inhibited and the shape of pulvinus cells changed from loosened rectangle type or oval type to closely spaced spindle cell. Furthermore, the GA content was reduced significantly and the expression of GA biosynthesis gene GA3ox1 was down-regulated, the expression of GA2ox5 and GA2ox8, genes involved in GA inactivation, was up-regulated, and the expression of GA biosynthesis gene GA20ox1 was up-regulated at the beginning and down-regulated later; the BR content was reduced significantly and the expression of BR biosynthesis genes CPD and DWF4 was up-regulated, which might be feedback regulated by endogenous BR levels. In addition, the expression of expansin genes EXPA4, EXPA5 and xyloglucan endotransglucosylase/hydrolase genes XTH1 and XET1 was down-regulated. In conclusion, Pcz treatment can adjust the signal transduction of GA and BR, inhibit the accumulation of GA and BR, regulate the expression of EXPs and XTHs, control the cell growth, and adjust plant type of maize effectively.

Key words: Maize, Propiconazole, Brassinosteroids, Phenotype, Cellular morphology

[1] Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Res, 2002, 75: 161–169 [2] 程富丽, 杜雄, 刘梦星, 靳小利, 崔彦宏. 玉米倒伏及其对产量的影响. 玉米科学, 2011, 19(1): 105–108 Cheng F L, Du X, Liu M X, Jin X L, Cui Y H. Lodging of summer maize and the effects on grain yield. J Maize Sci, 2011, 19(1): 105–108 (in Chinese with English abstract) [3] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量( >15 000 kg?hm-2)及其产量构成因子的影响. 中国农业科学, 2012, 45: 3437–3445 Wang K, Wang K R, Wang Y H, Zhao J, Zhao R L, Wang X M, Li J, Liang M X, Li S K. Effects of density on maize yield and yield components. Sci Agric Sin, 2012, 45: 3437–3445 (in Chinese with English abstract) [4] 李宁, 李建民, 翟志席, 李召虎, 段留生. 化控技术对玉米植株抗倒伏性状、农艺性状及产量的影响. 玉米科学, 2010, 18(6): 38–42 Li N, Li J M, Zhai Z X, Li Z H, Duan L S. Effects of chemical regulator on the lodging resistance traits, agricultural characters and yield of maize. J Maize Sci, 2010, 40(6): 38–42 (in Chinese with English abstract) [5] 卫晓轶, 张明才, 李召虎, 段留生. 冠菌素对玉米节间伸长和产量性状的影响. 科技导报, 2011, 29(20): 63–67 Wei X Y, Zhang M C, Li Z H, Duan L S. Effect of coronatine on internode elongation and yield characters of maize. Sci Technol Rev, 2011, 29(20): 63–67 (in Chinese with English abstract) [6] 张倩, 张明才, 刘明, 谭伟明, 肖佳雷, 来永才, 李召虎, 段留生. 氮肥-生长调节剂对寒地春玉米植株形态及产量的互作效应研究. 中国农业大学学报, 2014, 19(5): 29–37 Zhang Q, Zhang M C, Liu M, Tan W M, Xiao J L, Lai Y C, Li Z H, Duan L S. Interaction of nitrogen fertilizer and plant growth regular on plant morphology and yield in spring maize of cold region. J Chin Agric Univ, 2014, 19(5): 29–37 (in Chinese with English abstract) [7] 蔡永旺, 张英华, 周顺利, 鲁来清, 王志敏. 利用乙烯利塑造夏玉米凹形冠层对产量及其相关性状的影响. 玉米科学, 2010, 18(3): 90–94 Cai Y W, Zhang Y H, Zhou S L, Lu L Q, Wang Z M. Effects of concave canopy structure shaped with ethephon on yield and its correlated characters in summer maize. J Maize Sci, 2010, 18(3): 90–94 (in Chinese with English abstract) [8] 叶德练, 王庆燕, 张钰石, 李建民, 段留生, 张明才, 李召虎. 乙烯利和氮肥对玉米基部节间性状和抗折断力的调控研究. 中国农业大学学报, 2015, 20(6): 1–8 Ye D L, Wang Q Y, Zhang Y S, Li J M, Duan L S, Zhang M C, Li Z H. Study of ethephon and nitrogen rate in regulating the basal internode characteristics and breaking resistance of maize. J Chin Agric Univ, 2015, 20(6): 1–8 (in Chinese with English abstract) [9] 杨阳, 蒯婕, 吴莲蓉, 刘婷婷, 孙盈盈, 左青松, 周广生, 吴江生. 多效唑处理对直播油菜机械收获相关性状及产量的影响. 作物学报, 2015, 41: 938–945 Yang Y, Kuai J, Wu L R, Liu T T, Sun Y Y, Zuo Q S, Zhou G S, Wu J S. Effects of paclobutrazol on yield and mechanical harvest characteristics of winter rapeseed with direct seeding treatment. Acta Agron Sin, 2015, 41: 938–945 (in Chinese with English abstract) [10] 陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 2011, 44: 3529–3536 Chen X G, Shi Y H, Wang C Y, Yin Y P, Ning T Y, Shi C Y, Li Y, Wang Z L. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat. Sci Agric Sin, 2011, 44: 3529–3536 (in Chinese with English abstract) [11] 张倩, 张海燕, 谭伟明, 段留生. 30%矮壮素?烯效唑微乳剂对水稻抗倒伏性状及产量的影响. 农药学学报, 2011, 13: 144–148 Zhang Q, Zhang H Y, Tan W M, Duan L S. Effects of 30% chlormequat-uniconazole micro-emulsion on lodging resistance and yield of rice. Chin J Pest Sci, 2011, 13: 144–148 (in Chinese with English abstract) [12] 刘星贝, 汪灿, 胡丹, 杨浩, 佘恒志, 阮仁武, 吴东倩, 易泽林. 烯效唑干拌种对甜荞茎秆抗倒性能的影响. 作物学报, 2016, 42: 93–103 Liu X B, Wang C, Hu D, Yang H, She H Z, Ruan R W, Wu D Q, Yi Z L. Effects of seed dressing with uniconazole powder on lodging resistance of culm in common buckwheat. Acta Agron Sin, 2016, 42: 93–103 (in Chinese with English abstract) [13] Yoshida Y, Aoyama Y. Sterol I4a-demethylase and its inhibition: structural considerations on interaction of azole antifungal agents with lanosterol 14a-demethylase (P-45014DM) of yeast. Biochem Soc Trans, 1991, 19: 778–782 [14] Raymond, S B, David T C, Geoffre A C. Inhibitors of sterol biosynthesis and growth in plants and fungi. Phytochemistry, 1989, 28: 1791–1804 [15] 唐尚格, 夏玉先, 裴炎. 间接酶联免疫法测定植物内源激素. 西南农业大学学报, 1991, 13: 183–186 Tang S G, Xia Y X, Pei Y. Quantitative analysis of plant hormones with indirect enzyme-linked immunosorent assay (ELISA). J Southwest Agric Univ, 1991, 13: 183–186 (in Chinese with English abstract) [16] Liu T, Zhang J, Wang M Y, Wang Z Y, Li G F, Qu L, Wang G Y. Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.). Plant Cell Rep, 2007, 26: 2091–2099 [17] Kir G, Ye H, Nelissen H, Neelakandan A K, Kusnandar A S, Luo A D, Inzé D, Sylvester A W, Yin Y H, Becraft P W. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol, 2015, 169: 826–839 [18] Kim H B, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An C S, Lee I, Hwang I, Choe S. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol, 2006, 140: 548–557 [19] Sekimata K, Han S Y, Yoneyama K, Takeuchi Y, Yoshida S, Asami T. A specific and potent inhibitor of brassinosteroid biosynthesis possessing a dioxolane ring. J Agric Food Chem, 2002, 50: 3486–3490 [20] Hartwig T, Corvalan C, Best N B, Budka J S, Zhu J Y, Choe S, Schulz B. Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize. PLoS One, 2012, 7(5): e36625 [21] Cosgrove D J. Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol, 2015, 25: 162–172 [22] Rose J K, Braam J, Fry S C, Nishitani K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol, 2002, 43:1421–1435 [23] Xu Q, Burgess P, Xu J, Meyer W, Huang B. Osmotic stress- and salt stress-inhibition and gibberellin- mitigation of leaf elongation associated with up-regulation of genes controlling cell expansion. Environ Exp Bot, 2016, 131: 101–109 [24] Li Y, Tu L, Ye Z X, Wang M J, Gao W H, Zhang X L. A cotton fiber-preferential promoter, PGbEXPA2, is regulated by GA and ABA in Arabidopsis. Plant Cell Rep, 2015, 34: 1539–1549 [25] Yi L, Kende H. Expression of α-expansin and expansin-like genes in deepwater rice. Plant Physiol, 2002, 130: 1396–1405 [26] Huang L, Niu X, Xiong F, Zou X, Liu Y. Construction and genetic transformation of the RNA interference vector and functional analysis of rice expansin gene OsEXPB7. Chin J Appl Environ Biol, 2013, 19: 198–204 [27] Vriet C, Russinova E, and Reuzeau C. Boosting crop yields with plant steroids. Plant Cell, 2012, 24: 842–857 [28] Bergonci T, Silvafilho M C, Moura D S. Antagonistic relationship between AtRALF1and brassinosteroid regulates cell expansion-related genes. Plant Signal Behav, 2014, 9(10): e976146 [29] Bai M Y, Fan M, Oh E, et al. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. Plant Cell, 2012, 24: 4917–4929 [30] Bae J M, Kwak M S, Noh S A, Oh M J, Kim Y S, Shin J S. Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Res, 2014, 23: 657–667 [31] M a A S, Mateos I, Labrador E, Dopico B. Brassinolides and IAA induce the transcription of four α-expansin genes related to development in Cicer arietinum. Plant Physiol Biochem, 2004, 42: 709–716 [32] Romo S, Jiménez T, Labrador E, Dopico B. The gene for a xyloglucan endotransglucosylase/ hydrolase from Cicer arietinum is strongly expressed in elongating tissues. Plant Physiol Biochem, 2005, 43: 169–176 [33] Keuskamp D H, Sasidharan R, Vos I, Peeters AJ, Voesenek LA, Pierik R. Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J, 2011, 67: 208–217

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[9] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!