作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1689-1695.doi: 10.3724/SP.J.1006.2017.01639
尹能文**,李加纳**,刘雪,练剑平,付春,李威,蒋佳怡,薛雨飞,王君,柴友荣*
YIN Neng-Wen**,LI Jia-Na**,LIU Xue,LIAN Jian-Ping,FU Chun,LI Wei,JIANG Jia-Yi,XUE Yu-Fei,WANG Jun,CHAI You-Rong*
摘要:
以正常生长和高温干旱复合胁迫下甘蓝型油菜中双10号的茎和根为材料,采用组织化学、生物化学、气相色谱-质谱联用(GC-MS)分析技术,研究了木质部结构和木质素成分的胁迫应答规律及其在茎和根中的差别。冰冻切片组织化学染色显示,与正常生长的网室植株(正常植株)相比,高温干旱下生长的温室植株(胁迫植株)的茎和根中木质部均显著加厚,染色更深;与此对应,溴乙酰法测定的茎木质素总量比对照增加31.64%。此外,胁迫茎中的导管孔径明显变小,但根中的导管孔径和导管数量均明显增加。硫代酸解法测定木质素单体表明,胁迫茎中被解离出的木质素单体总量比对照降低40.08%,说明有更高的缩合键比例;S/G值(1.82)比对照(1.29)大大增高,说明S型木质素比例增加而G型木质素比例下降。油菜茎与根木质化性状比较显示,根木质素比茎木质素含有更高比例的缩合键,茎中S型木质素占主体(S/G=1.29),而根中G型木质素占主体(S/G=0.49)且H型木质素含量(7.43%)比茎中(0.83%)高近10倍。H型和G型木质素单体的苯环甲基化程度比S型低,单体间更容易形成缩合键,根中高比例H型和G型木质素单体可能是导致其具有高比例缩合键的主要原因。
[1] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol, 2003, 54: 519–546 [2] Scheller H V, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol, 2010, 61: 263–289 [3] Escamilla-Trevi?o L L, Shen H, Uppalapati S R , Ray T, Tang Y H, Hernandez T, Yin Y B, Xu Y, Dixon R A. Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytol, 2010, 185: 143–155 [4] Humphreys J M, Hemm M R, Chapple C. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA, 1999, 96: 10045–10050 [5] Weng J K, Mo H P, Chapple C. Over-expression of F5H in COMT-deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation. Plant J, 2010, 64: 898–911 [6] Rogers L A, Campbell M M. The genetic control of lignin deposition during plant growth and development. New Phytol, 2004, 164: 17–30 [7] Weng J K, Chapple C. The origin and evolution of lignin biosynthesis. New Phytol, 2010, 187: 273–285 [8] Vanholme R, Van Acker R, Boerjan W. Potential of Arabidopsis systems biology to advance the biofuel field. Trends Biotechnol, 2010, 28: 543–547 [9] Huang J L, Gu M, Lai Z B, Fan B F, Shi K, Zhou Y H, Yu J Q, Chen Z X. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol, 2010, 153: 1526–1538 [10] Graven P, DeKoster C G, Boon J J, Bouman F. Structure and macromolecular composition of the seed coat of the Musaceae. Ann Bot-London, 1996, 77: 105–122 [11] Zhong R Q, Taylor J J, Ye Z H. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. Plant Cell, 1997, 9: 2159–2170 [12] Kenrick P, Crane P R. The origin and early evolution of plants on land. Nature, 1997, 389: 33–39 [13] Weng J K, Akiyama T, Ralph J, Chapple C. Independent recruitment of an O-methyltransferase for syringyl lignin biosynthesis in Selaginella moellendorffii. Plant Cell, 2011, 23: 2708–2724 [14] Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber J H, Ralph J, Boerjan W. Metabolic engineering of novel lignin in biomass crops. New Phytol, 2012, 196: 978–1000 [15] Macmillan C P, Birke H, Bedon F, Pettolino F A. Lignin deposition in cotton cells: where is the lignin? J Plant Biochem Physiol, 2013, 1: e106. doi: 10.4172/jpbp.1000e106 [16] Chapple, C C S, Vogt T, Ellis B E, Somerville C R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell, 1992, 4: 1413–1424 [17] Nakashima J, Chen F, Jackson L, Shadle G, Dixon R A. Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): effects on lignin composition in specific cell types. New Phytol, 2008, 179: 738–750 [18] Li L, Cheng X F, Leshkevich J, Umezawa T, Harding S A, Chiang V L. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell, 2001, 13: 1567–1586 [19] Tu Y, Rochfort S, Liu Z Q, Ran Y D, Griffith M, Badenhorst P, Louie G V, Bowman M E, Smith K F, Noel J P, Mouradov A, Spangenberg G. Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell, 2010, 22: 3357–3373 [20] Giordano A, Liu Z Q, Panter S N, Dimech A M, Shang Y J, Wijesinghe H, Fulgueras K, Ran Y D, Mouradov A, Rochfort S, Patron N J, Spangenberg G C. Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a cinnamoyl CoA reductase gene. Transgenic Res, 2014, 23: 503–517 [21] Moura J C M S, Bonine C A V, De Oliveira Fernandes Viana J, Dornelas M C, Mazzafera P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol, 2010, 52: 360–376 [22] Moura-Sobczak J, Souza U, Mazzafera P. Drought stress and changes in the lignin content and composition in Eucalyptus. BMC Proc, 2011, 5: P103 [23] Eynck C, Seguin-Swartz G, Clarke W E, Parkin I A P. Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa. Mol Plant Pathol, 2012, 13: 887–899 [24] Olenichenko N, Zagoskina N. Response of winter wheat to cold: production of phenolic compounds and L-phenylalanine ammonia lyase activity. Appl Biochem Microbiol, 2005, 41: 600–603 [25] Wei H U I, Dhanaraj A L, Arora R, Rowland L J, Fu Y, Sun L. Identification of cold acclimation responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies. Plant Cell Environ, 2006, 29: 558–570 [26] Cruz R T, Jordan W R, Drew M C. Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol, 1992, 99: 203–212 [27] Riccardi F, Gazeau P, de Vienne D, Zivy M. Protein changes in response to progressive water deficit in maize: quantitative variation and polypeptide identification. Plant Physiol, 1998, 117: 1253–1263 [28] Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann P M. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol, 2006, 140: 603–612 [29] Yang L, Wang C C, Guo W D, Li X B, Lu M, Yu C L. Differential expression of cell wall related genes in the elongation zone of rice roots under water deficit. Rus J Plant Physiol, 2006, 53, 390–395 [30] 黄杰恒. 干旱胁迫下油菜抗倒伏相关性状动态变化及木质素关键基因表达特性分析. 西南大学博士学位论文, 重庆, 2013 Huang J H. Lodging Resistant Traits and Lignin Related Gene Analysis in B. napus under Drought Stress. PhD Dissertation of Southwest University, Chongqing, China, 2013 (in Chinese with English abstract) [31] 徐宇强, 胡轶, 付凤玲, 李晚忱. 干旱胁迫下玉米自交系叶片木质素含量变化及其与耐旱性的关系. 玉米科学, 2007, 15(5): 72–75 Xu Y Q, Hu Y, Fu F L, Li W C. Changes of lignin content in leaf of maize inbred lines under drought stress and its relationship with drought tolerance. J Maize Sci, 2007, 15(5): 72–75 (in Chinese with English abstract) [32] Champolivier L, Merrien A. Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. Eur J Agron, 1996, 5: 153–160 [33] Chen L, Auh C, Chen F, Cheng X F, Aljoe H, Dixon R A, Wang Z Y. Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem, 2002, 50: 5558–5565 [34] Foster C E, Martin T M, Pauly M. Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. J Visual Exp, 2010, (37): 1745. doi: 10.3791/1745 [35] Hatfield R D, Grabber J, Ralph J, Brei K. Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J Agric Food Chem, 1999, 47: 628–632 [36] Chang X F, Chandra R, Berleth T, Beatson R P. Rapid, microscale, acetyl bromide-based method for high-throughput determination of lignin content in Arabidopsis thaliana. J Agric Food Chem, 2008, 56: 6825–6834 [37] Fukushima R S, Hatfield R D. Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J Agric Food Chem, 2001, 49: 3133–3139 [38] Lapierre C, Pollet B, Rolando C. New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res Chem Intermediat, 1995, 21: 397–412 [39] Yosef E, Ben-Ghedalia D. Changes in thioacidolysis products of lignin in wheat straw as affected by SO2 treatment and passage through the gastro-intestine of sheep. Anim Feed Sci Tech, 1999, 80: 55–65 [40] Robinson A R, Mansfield S D. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J, 2009, 58: 706–714 [41] Yue F X, Lu F C, Sun R C, Ralph J. Syntheses of lignin-derived thioacidolysis monomers and their uses as quantitation standards. J Agric Food Chem, 2012, 60: 922–928 [42] Nakano J, Meshitsuka G. The detection of lignin. In: Lin S, ed, Methods in Lignin Chemistry. Berlin, Germany: Springer-Verlag, pp 23–32 [43] Bart R S, Chern M, Vega-Sanchez M E, Canlas P, Ronald P C. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae. PLoS Genet, 2010, 6: 110–117 [44] Leplé J C, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang K Y, Kim H, Ruel K, Lefebvre A, Joseleau J P, Grima-Pettenati J, De Rycke R, Andersson-Gunneras S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield S D, Ralph J, Pilate G, Boerjan W. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell, 2007, 19: 3669–3691 [45] Ruel K, Berrio-Sierra J, Derikvand M M, Pollet B, Thevenin J, Lapierre C, Jouanin L, Joseleau J P. Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol, 2009, 184: 99–113 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[4] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[5] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[6] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[7] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[8] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[9] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[10] | 秦琴, 陶有凤, 黄帮超, 李卉, 高云天, 钟晓媛, 周中林, 朱莉, 雷小龙, 冯生强, 王旭, 任万军. 杂交水稻机插制种的亲本穗茎生长与花期特性[J]. 作物学报, 2022, 48(4): 988-1004. |
[11] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[12] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[13] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[14] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[15] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
|