欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1705-1714.

• 耕作栽培·生理生化 • 上一篇    下一篇

水氮耦合对固定道垄作栽培春小麦根长密度和产量的影响

马忠明1,*,陈娟2,吕晓东1,刘婷婷1   

  1. 1 甘肃省农业科学院, 甘肃兰州730070; 2 甘肃省农业科学院经济作物与啤酒原料研究所, 甘肃兰州 730070
  • 收稿日期:2016-11-02 修回日期:2017-07-23 出版日期:2017-11-12 网络出版日期:2017-08-03
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(201503125-02)资助。

Effects of Water and Nitrogen Coupling on Root Length Density and Yield of Spring Wheat in Permanent Raised-bed Cropping System

MA Zhong-Ming1*,CHEN Juan2,LYUXiao-Dong1,LIU Ting-Ting1   

  1. 1 Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 2 Institute of Economic Crops and Malting Barley Material, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
  • Received:2016-11-02 Revised:2017-07-23 Published:2017-11-12 Published online:2017-08-03
  • Supported by:

    This study was supported by the China Special Fund for Agro-scientific Research in the Public Interest (201503125-02).

摘要:

固定道垄作(PRB)是在农田中设固定的机械行走道的一种垄作和沟灌栽培模式, 是河西灌区春小麦取代传统平作和大水漫灌种植方式的一种新技术。为了明确PRB种植模式下合理的施氮水平和灌水量, 2014—2015年连续2年采用二因素裂区设计, 以3种灌溉定额(1200、2400和3600 m3 hm–2)为主区, 以4种施氮水平(0、90、180和270 kg hm–2)为副区, 研究水氮耦合对小麦不同生育期的根长密度及最终产量的影响。随灌水量和施氮量的增加, 根长密度呈现先增后降的变化趋势, 且灌水量的效应大于施氮水平的效应; 开花、灌浆和成熟期的根长密度与籽粒产量呈正相关。回归分析显示, 根长密度最大值的水氮耦合条件是灌水量约2850 m3 hm–2、施氮量196~207 kg hm–2。中等灌水量(2400 m3 hm–2)条件下, 小麦主要生育期根长密度显著增加, 提高了根长密度在40~80 cm土层的分配比例, 增加了水分利用效率和氮肥农学利用效率。综合评价小麦籽粒产量、水分利用率和氮肥农学利用效率, 中等灌水量与中氮水平(180 kg hm–2)是所有处理中的最佳水氮耦合模式, 可用于河西灌区春小麦PRB栽培模式。当加大灌水至3600 m3 hm–2时, 产量没有显著增加, 水分利用效率和氮肥农学利用效率显著下降, 其原因可能是高灌水量使小麦主要生育期的根长密度降低, 且根长密度在0~40 cm土层的比例升高, 在40~80 cm土层的比例下降。

关键词: 水氮耦合, 固定道, 根长密度, 产量, 春小麦

Abstract:

Permanent raised-bed (PRB) with fixed traffic lane and furrow irrigation is a new cropping pattern of spring wheat in Hexi Corridor of China, which may substitute the traditional flat-planting and flood irrigation technique in this area. To guild water and N application in spring wheat cultivation under PRB condition, we carried out a two-year (2014–2015) field experiment in a split-plot design, with irrigation as the main plot and nitrogen (N) application as the sub-plot. The irrigation amounts were 1200 (W1200), 2400 (W2400), and 3600 m3 ha-1 (W3600), and the N application rates were 0 (N), 90 (N90), 180 (N180), and 270 kg ha-1 (N270). The effects on wheat root length density (RLD) at different growth stages and final yield were assessed. With increasing the level of irrigation or N application, wheat RLD showed a up–down changing trend, and the irrigation effect was larger than the nitrogen effect. Grain yield was positively correlated with RLD at anthesis, filling and maturity stages. Regression analysis revealed that the highest RLD could be obtained under the combination of 2850 m3 ha-1 irrigation and 196–207 kg ha-1 N. In the moderate irrigation treatment (2400 m3 ha-1), the RLD significantly increased at major wheat growth stages. Meanwhile, the RLD proportion in 40–80 cm soil depth raised, leading to increased water use efficient (WUE) and N agronomic efficiency (NUEa) of wheat. The comprehensive consideration of wheat yield, NUEa and WUE indicates that moderate irrigation (2400 m3 ha-1) and N application rate (180 kg ha-1) is the best management in PRB cropping wheat in Hexi Corridor. More irrigation to 3600 m3 ha-1 had no significant effect to increase yield but resulted in significant decreases of WUE and NUEa because wheat RLD at major growth stages was decreased under luxurious irrigation condition and the RLD proportion in 40–80 cm soil depth was low resulting from the increased RLD proportion in 0–40 cm soil depth.

Key words: Water and nitrogen coupling, Permanent raised bed, Root length density, Grain yield, Spring wheat

[1] 魏胜文, 马忠, 牛俊义. 基于地区投入产出模型的干旱区水资源效益评价——以黑河流域甘肃张掖市为例. 中国沙漠, 2011, 31: 799−803
Wei S W, Ma Z, Niu J Y. Evaluation of water benefit in arid area based on regional input-output model: a case of Zhangye city in Gansu province, China. J Desert Res, 2011, 31: 799−803 (in Chinese with English abstract) 
[2] 杨林章, 冯彦房, 施卫明, 薛利红, 王慎强, 宋祥甫, 常志州. 我国农业面源污染治理技术研究进展. 中国生态农业学报, 2013, 21: 96−101
Yang L Z, Feng Y F, Shi W M, Xue L H, Wang S Q, Song X F, Chang Z Z. Review of the advances and development trends in agricultural non-point source pollution control in China. Chin J Eco-Agric, 2013, 21: 96−101 (in Chinese with English abstract)
[3] Govaerts B, Sayre K D, Lichter K, Dendooven L, Deckers J.              Influence of permanent raised bed planting and residue manage-ment on physical and chemical soil quality in rain fed maize/wheat system. Plant Soil, 2007, 291: 39–54
[4] 吕晓东, 马忠明. 不同耕作方式对春小麦田土壤水分过程的影响. 核农学报, 2015, 29: 2184−2191
Lyu X D, Ma Z M. Effects of different tillages on the soil water of spring wheat. J Nucl Agric Sci, 2015, 29: 2184−2191 (in Chi-nese with English abstract)
[5] Ma Z M, Chen J, Lv X D, Liu L L, Siddique K. Distribution of soil carbon and grain yield of spring wheat under a permanent raised bed planting system in an arid area of northwest China. Soil Tillage Res, 2016, 163: 274−281
[6] Wang F H, Wang X Q, Sayre K. Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China. Field Crops Res, 2004, 87: 35−42
[7] Lv G H, Kang Y H, Li L, Wan S Q. Effect of irrigation methods on root development and profile soil water uptake in winter wheat. Irrig Sci, 2010, 28: 387−398
[8] 薛丽华, 段俊杰, 王志敏, 郭志伟, 鲁来清. 不同水分条件对冬小麦根系时空分布、土壤水利用和产量的影响. 生态学报, 2010, 30: 5296−5305
Xue L H, Duan J J, Wang Z M, Guo Z W, Lu L Q. Effects of dif-ferent irrigation regimes on spatial-temporal distribution of roots, soil water use and yield in winter wheat. Acta Ecol Sin, 2010, 30: 5296−5305 (in Chinese with English abstract)
[9] 宋海星, 李生秀. 水、氮供应和土壤空间所引起的根系生理特性变化. 植物营养与肥料学报, 2004, 10: 6−11
Song H X, Li S X. Changes of root physiological characteristics resulting from supply of water, nitrogen and root-growing space in soil. Plant Nutr Fert Sci, 2004, 10: 6−11 (in Chinese with Eng-lish abstract)
[10] Araki H, Hamada A, Hossain M A, Takahashi T. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Res, 2012, 137: 27−36
[11] Colmer T, Voesenek L. Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol, 2009, 36: 665–681
[12] 孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40: 1639−1649
Sun Y J, Sun Y Y, Xu H, Li Y, Yan P J, Jiang M J, Ma J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2014, 40: 1639−1649 (in Chi-nese with English abstract)
[13] 漆栋良, 吴雪, 胡田田. 施氮方式对玉米根系生长、产量和氮素利用的影响. 中国农业科学, 2014, 47: 2804−2813
Qi D L, Wu X, Hu T T. Effects of nitrogen supply methods on root growth, yield and nitrogen use of maize. Sci Agric Sin, 2014, 47: 2804−2813 (in Chinese with English abstract)
[14] 马存金, 刘鹏, 赵秉强, 张善平, 冯海娟, 赵杰, 杨今胜, 董树亭, 张吉旺, 赵斌. 施氮量对不同氮效率玉米品种根系时空分布及氮素吸收的调控. 植物营养与肥料学报, 2014, 20: 845−859
Ma C J, Liu P, Zhao B Q, Zhang S P, Feng H J, Zhao J, Yang J S, Dong S T, Zhang J W, Zhao B. Regulation of nitrogen application rate on temporal and spatial distribution of roots and nitrogen up-take in different N use efficiency maize cultivars. J Plant Nutr Fert, 2014, 20: 845−859 (in Chinese with English abstract)
[15] 彭亚静, 汪新颖, 张丽娟, 郝晓然, 乔继杰, 王玮, 吉艳芝. 根层调控对小麦–玉米种植体系氮素利用及土壤硝态氮残留的影响. 中国农业科学, 2015, 48: 2187−2198
Peng Y J, Wang X Y, Zhang L J, Hao X R, Qiao J J, Wang W, Ji Y Z. Effects of root layer regulation on nitrogen utilization and soil NO3?-N residue of wheat–maize system. Sci Agric Sin, 2015, 48: 2187−2198
[16] 张凤翔, 周明耀, 周春林, 钱晓晴. 水肥耦合对水稻根系形态与活力的影响. 农业工程学报, 2006, 22(5): 197−200
Zhang F X, Zhou M Y, Zhou C L, Qian X Q. Effects of water and fertilizer coupling on root morphological characteristics and                 activities of rice. Trans CSAE, 2006, 22(5): 197−200 (in Chinese with English abstract)
[17] Luis L B, Rafael J, Ramon R. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen             application. Field Crops Res, 2005, 94: 86–97
[18] Comfort S, Malzer G, Busch R. Nitrogen fertilization of spring wheat genotypes: influence on root growth and soil water deple-tion. Agron J, 1988, 80: 114–120
[19] Wang C Y, Liu W X, Li Q X, Ma D Y, Lu H F, Feng W, Xie Y X, Zhu Y J, Guo T C. Effects of different irrigation and nitrogen re-gimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res, 2014, 165: 138–149
[20] Bohm W. Methods of Studying Root System. Berlin: Springer Verlag, 1979
[21] He J, Li H, McHugh A D, Ma Z, Cao X, Wang Q, Zhang X, Zhang X. Spring wheat performance and water use efficiency on permanent raised beds in arid northwest China. Aust J Soil Res, 2008, 46: 659−666
[22] 陈娟, 马忠明, 吕晓东, 刘婷婷. 水氮互作对固定道垄作栽培春小麦根系生长及产量的影响. 应用生态学报, 2016, 27: 1511−1520
Chen J, Ma Z M, Lyu X D, Liu T T. Influence of different levels of irrigation and nitrogen application on the root growth and yield of spring wheat under permanent raised bed. Chin J Appl Ecol, 2016, 27: 1511−1520
[23] 刘世全, 曹红霞, 张建青, 胡笑涛. 不同水氮供应对小南瓜根系生长、产量和水氮利用效率的影响. 中国农业科学, 2014, 47: 1362−1371
Liu S Q, Cao H X, Zhang J Q, Hu X T. Effects of different water and nitrogen supplies on root growth, yield and water and                   nitrogen use efficiency of small pumpkin. Sci Agric Sin, 2014, 47: 1362−1371 (in Chinese with English abstract)
[24] Cabangon R J, Tuong T P, Castillo E G, Bao L X, Lu G A, Wang G H, Cui Y L, Bouman B A, Li Y H, Chen C D. Effect of irriga-tion method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environ, 2004, 2: 195–206
[25] 王淑芬, 张喜英, 裴冬. 不同供水条件对冬小麦根系分布、产量及水分利用效率的影响. 农业工程学报, 2006, 22(2): 27−32
Wang S F, Zhang X V, Pei D. Impacts of different water supplied conditions on root distribution, yield and water utilization effi-ciency of winter wheat. Trans CSAE, 2006, 22(2): 27−32 (in Chinese with English abstract)
[26] 吉艳芝, 刘辰琛, 巨晓棠, 张丽娟, 冯万忠, 刘树庆. 根层调控对填闲作物消减设施蔬菜土壤累积硝态氮的影响. 中国农业科学, 2010, 43: 5063−5072
Ji Y Z, Liu C C, Ju X T, Zhang L J, Feng W Z, Liu S Q. Effects of root layer regulation on reducing soil nitrate accumulation by catch crops in greenhouse vegetable production system. Sci Agric Sin, 2010, 43: 5063−5072 (in Chinese with English abstract)
[27] Wulfsohn D, Gu Y, Wulfsohn A, Mojlaj E. Statistical analysis of wheat root growth patterns under conventional and no-till sys-tems. Soil Tillage Res, 1996, 38: 1−16
[28] 李话, 张大勇. 半干旱地区春小麦根系形态特征与生长冗余的初步研究. 应用生态学报, 1999, 10: 26−30
Li H, Zhang D Y. Morphological characteristics and growth re-dundancy of spring wheat root system in semi-arid regions. Chin J Appl Ecol, 1999, 10: 26−30 (in Chinese with English abstract)
[29] 朱德峰, 林贤青, 曹卫星. 超高产水稻品种的根系分布特点. 南京农业大学学报, 2000, 23(4): 5−8
Zhu D F, Lin X Q, Cao W X. Characteristics of root distribution of super high-yielding rice varieties. J Nanjing Agric Univ, 2000, 23(4): 5−8 (in Chinese with English abstract)
[30] Wang Q, Li F R, Zhao L, Zhang E H, Shi S L, Zhao W Z, Song W X, Vance M. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland. Plant Soil, 2010, 337: 325–339
[31] Zhou X L, Wang H, Chen Q G, Ren J. Coupling effects of depth of film-bottomed tillage and amount of irrigation and nitrogen fer-tilizer on spring wheat yield. Soil Tillage Res, 2007, 94: 251−261
[32] Karam F, Kabalan R, Breidi J, Oweis T. Yield and water-produc¬tion functions of two durum wheat cultivars grown under differ-ent irrigation and nitrogen regimes. Agric Water Manag, 2009, 96: 603−615

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!