欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (12): 1746-1759.doi: 10.3724/SP.J.1006.2017.01746

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同磷水平下大麦分蘖期磷效率相关性状QTL定位分析

胡德益1,蔡露1,陈光登1,*,张锡洲1,刘春吉2   

  1. 1四川农业大学资源学院, 四川成都 611130;2 CSIRO Agriculture, 306 Carmody Road, St Lucia, QLD 4067, Australia
  • 收稿日期:2016-12-12 修回日期:2017-07-23 出版日期:2017-12-12 网络出版日期:2017-08-10
  • 基金资助:

    本研究由国家自然科学基金项目(31401377), 四川省科技支撑计划项目(2014NZ0008)和四川省教育厅重点项目(14ZA0002)资助。

Mapping QTLs for Phosphorus Efficiency at Tillering Stage under Different Phosphorus Levels in Barley (Hordeum vulgare L.)

HU De-Yi1, CAI Lu1, CHEN Guang-Deng1,*, ZHANG Xi-Zhou1,Chunji LIU2   

  1. 1 College of resources, Sichuan Agricultural University, Chengdu 611130, China; 2 CSIRO Agriculture, 306 Carmody Road, St Lucia, QLD 4067, Australia
  • Received:2016-12-12 Revised:2017-07-23 Published:2017-12-12 Published online:2017-08-10
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31401377), the Key Technology R&D Program of Sichuan Province (2014NZ0008), and the Key Project of Education Department of Sichuan Province (14ZA0002).

摘要:

磷素营养与大麦品质及产量密切相关,磷高效遗传机制和品种改良是近年的研究热点之一。本研究利用由大麦栽培品种Baudin和种质材料CN4079杂交构建的重组自交系(RIL)群体,低磷胁迫(0.02 mmol L1 KH2PO4)与正常供磷(0.2 mmol L1 KH2PO4)条件下,对地上部和地下部磷素利用效率、磷素吸收效率和干重,以及分蘖数相关的QTL定位,并预测相关位点基因。表型鉴定结果表明,各性状在RIL群体中表现连续变异,并存在超亲分离。两种磷水平下,共检测到16个QTL,分布在2H、3H和5H染色体上,表型贡献率14.1%~28.5%。3H染色体上含有3个磷素利用效率位点,其增效等位基因均来源于Baudin,其中Qspue.sau-3H.1和Qrpue.sau-3H与控制磷素吸收效率的Qspae.sau-3H和Qrpae.sau-3H处于同一区段,而Qspue.sau-3H.2与控制分蘖数的位点Qtn.sau-3H处于同一区段。5H染色体上含有3个磷素吸收效率位点,其中Qspae.sau-5H.2和Qrpae.sau-5H的增效等位基因来自CN4079,且与控制磷素利用效率的Qspue.sau-5H和Qrpue.sau-5H,以及控制干重的Qsdw.sau-5H和Qrdw.sau-5H处于同一区段。在磷效率相关的4个区段中,除Qspue.sau-3H.1所处区间仅含有磷酸代谢与磷脂代谢相关基因外,其他区间均包含磷酸盐转运蛋白基因、磷酸代谢与磷脂代谢相关基因。

关键词: 大麦, 磷效率, 分蘖期, 重组自交系, QTL定位

Abstract:

Phosphorus (P) nutrition has close relationship with the quality and yield of barley and the genetic mechanism of P-efficient and variety improvement become hot research topics in recent years. In this study, we mapped quantitative trait loci (QTLs) for P-efficient traits using a recombinant inbred line (RIL) population derived from a cross between Baudin and CN4079. P-utilization efficiency (PUE), P-absorption efficiency (PAE), and dry weight (DW) of shoots and roots, as well as tiller number (TN) were evaluated in low-P (0.02 mmol L1 KH2PO4) and normal-P (0.2 mmol L1 KH2PO4) conditions. QTLs associated with these traits were mapped onto a barley linkage map and their candidate genes were predicted. Phenotyping results showed continuous variation and transgressive segregation in all traits tested. A total of 16 QTLs were detected on chromosomes 2H, 3H, and 5H under low-P and normal-P conditions, with explained phenotypic variance ranging from 14.1% to 28.5%. Three QTLs associated with PUE were mapped on 3H and their positive alleles were all from Baudin. Among them, Qspue.sau-3H.1 and Qrpue.sau-3H were located in common region with PAE loci Qspae.sau-3H and Qrpae.sau-3H, whereas Qspue.sau-3H.2 was very closely to Qtn.sau-3H controlling TN. Three QTLs for PAE were mapped on 5H, among which Qspae.sau-5H.2 and Qrpae.sau-5H were from CN4079. The two PAE loci were located in adjacent region intervals of PUE loci Qspue.sau-5H and Qrpue.sau-5H and DW loci Qsdw.sau-5H and Qrdw.sau-5H. In the four chromosomal fragments harboring P-efficiency loci, except for Qspue.sau-3H.1 that contained candidate genes in phosphoric acid metabolism and phospholipid metabolism, the remaining loci all contained genes in phosphate transporter and related genes in phosphoric acid metabolism and phospholipid metabolism.

Key words: Hordeum vulgare L., Tillering stage, Phosphorus efficiency, RIL, QTL mapping

[1]Schachtman D, Reid R, Ayling S M. Phosphorus uptake by plants: from soil to cell. Plant Physiol, 1998, 116: 447–453 [2]Hermans C, Hammond J P, White P J, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci, 2006, 11: 610–617 [3]Hammond J P, White P J. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot, 2008, 59: 93–109 [4]唐宏亮, 申建波, 张福锁, Rengel Z. 磷和外源生长素对白羽扇豆(Lupinus albus L.)根形态和生理特性的影响. 中国科学C辑: 生命科学, 2013, 43: 201–212 Tang H L, Shen J B, Zhang F S, Rengel Z. Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.). Sci Sin Vitae, 2013, 43: 201–212 (in Chinese) [5]赵静, 付家兵, 廖红, 何勇, 年海, 胡月明, 邱丽娟, 董英山, 严小龙. 大豆磷效率应用核心种质的根构型性状评价. 科学通报, 2004, 49: 1249–1257 Zhao J, Fu J B, Liao H, He Y, Nian H, Hu Y M, Dong Y S, Yan X L. The traits evaluation about root architecture of soybean core collection’s efficiency of phosphorus application. Chin Sci Bull, 2004, 49: 1249–1257 (in Chinese) [6]Tiessen H. Phosphorus in the global environment: transfers, cycles and management. Oceanographic Literature Review, 1995: 27–42 [7]郭程瑾, 李宾兴, 王斌, 李雁鸣, 肖凯. 小麦高效吸收和利用磷素的生理机制. 作物学报, 2006, 32: 827–832 Guo C J, Li B X, Wang B, Li Y M, Xiao K. Physiological mechanisms of absorption and use of phosphorus with high efficiency in wheat cultivars. Acta Agron Sin, 2006, 32: 827–832 (in Chinese with English abstract) [8]韦还和, 孟天瑶, 李超, 张洪程, 戴其根, 马荣荣, 王晓燕, 杨筠文. 水稻甬优12产量13.5 t hm-2以上超高产群体的氮素积累、分配与利用特征. 作物学报, 2016, 42: 886–897 Wei H H, Meng T Y, Li C, Zhang H C, Dai Q G, Ma R R, Wang X Y, Yang J W. Accumulation, distribution, and utilization characteristics of phosphorus in Yongyou 12 yielding over 13.5 t ha–1. Acta Agron Sin, 2016, 42: 886–897 (in Chinese with English abstract) [9]蔡秋燕, 张锡洲, 李廷轩, 陈光登, 吴德勇. 磷高效野生大麦拔节期对植酸态有机磷的利用. 中国农业科学, 2015, 48: 3146–3155 Cai Q Y, Zhang X Z, Li T X, Chen G D, Wu D Y. The utilization of phytate organic phosphorus in P-efficient wild barley genotypes at jointing stage. Sci Agric Sin, 2015, 48: 3146–3155 (in Chinese with English abstract) [10]林海建, 张志明, 张永中, 高世斌, 潘光堂. 作物氮、磷、钾利用相关性状的QTL定位研究进展. 植物营养与肥料学报, 2010, 16: 732–743 Lin H J, Zhang Z M, Zhang Y Z, Gao S B, Pan G T. Advancement of QTL analysis for traits associated to N, P and K utilization. Plant Nutr Fert Sci, 2010, 16: 732–743 (in Chinese with English abstract) [11]Wissuwa M, Yano M, Ae N. Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet, 1998, 97: 777–783 [12]Chin J H, Lu X, Haefele S M, Gamuyao R, Ismail A, Wissuwa M. Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1. Theor Appl Genet, 2010, 120: 1073–1086 [13]Li Y D, Wang Y J, Tong Y P, Gao J G, Zhang J S, Chen S Y. QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica, 2005, 142: 137–142 [14]King K E, Lauter N, Lin S F, Scott M P, Shoemaker R C. Evaluation and QTL mapping of phosphorus concentration in soybean seed. Euphytica, 2013, 189: 261–269 [15]Yan X, Liao H, Beebe S E, Blair M W, Lynch J P. QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant and Soil, 2004, 265: 17–29 [16]Yang M, Ding G D, Shi L, Xu F S, Meng J L. Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant & Soil, 2011, 339: 97–111 [17]Su J Y, Xiao Y M, Li M, Liu Q Y, Li B, Tong Y P, Jia J Z, Li Z S. Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant & Soil, 2006, 281: 25–36 [18]Su J Y, Zheng Q, Li H W, Li B, Jing R L, Tong Y P. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci, 2009, 176: 824–836 [19]Guo Y, Kong F M, Xu Y F, Zhao Y, Liang X, Wang Y Y, An D, Li S. QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet, 2012, 124: 851–865 [20]Kjar B, Jensen J. The inheritance of nitrogen and phosphorus content in barley analysed by genetic markers. Hereditas, 1995, 123: 109–119 [21]Gong X, Wheeler R, Bovill W D, Mcdonald G K. QTL mapping of grain yield and phosphorus efficiency in barley in a Mediterranean-like environment. Theor Appl Genet, 2016, 129: 1657–1672 [22]唐旭, 陈义, 吴春艳, 杨生茂, 刘玉学, 吕豪豪, 马义兵, 李菊梅. 大麦长期肥料效率和土壤养分平衡. 作物学报, 2013, 39: 665–672 Tang X, Chen Y, Wu C Y, Yang S M, Liu Y X, Lyu H H, Ma Y B, Li J M. Fertilizer efficiency and soil apparent nutrient balance for barley under long-term fertilization. Acta Agron Sin, 2013, 39: 665–672 (in Chinese with English abstract) [23]鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. pp 309–314 Lu R K. Analytical Methods of Soil and Agrochemistry. Beijing: China Agricultural Science and Technology Press, 2000. pp 309–314 (in Chinese) [24]Van O J W. JointMap 4, Software for the calculation of genetic linkage maps in experimental populations. Wageningen, 2006 (http://www.kyazma.nl/docs/JM4manual.pdf) [25]Van O J W. MapQTL version 6.0, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, 2009. https://www.kyazma.nl/docs/MQ6Manual.pdf [26]Chen A, Chen X, Wang H, Liao D H, Gu M, Qu H Y, Sun S B, Xu G H. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato. BMC Plant Biol, 2014, 14: 61 [27]Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci, 2005, 10: 22–29 [28]Guo B, Jin Y, Wussler C, Blancaflor E B , Motes C M, Versaw W K. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol, 2008, 177:889–898 [29]Li J Z, Xie Y, Dai A Y, Liu L F, Li Z C. Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J Genet Genomics, 2009, 36: 173–183 [30]崔世友, 耿雷跃, 孟庆长, 喻德跃. 大豆苗期耐低磷性及其QTL定位. 作物学报, 2007, 33: 378–383 Cui S Y, Geng L Y, Meng Q C, Yu D Y. QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L.) during seedling stage. Acta Agron Sin, 2007, 33: 378–383 (in Chinese with English abstract) [31]Zhang H W, Huang Y, Ye X S, Shi L, Xu F S. Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant & Soil, 2009, 320: 91–102 [32]Beebe S E, Rojaspierce M, Yan X L, Blair M W, Pedraza F, Munoz F M, Tohme J, Lynch J P. Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci, 2006, 46: 413–423 [33]Devos K M. Updating the ‘Crop Circle’. Curr Opin Plant Biol, 2005, 8: 155–162 [34]李玉京, 刘建中, 李滨, 李继云, 姚树江, 李振声. 普通小麦基因组中耐低磷胁迫特性的染色体控制. 遗传学报, 1999, 26: 529–538 Li Y J, Liu J Z, Li B, Li J Y, Yao S J, Li Z S. Chromosomal control of the tolerance to phosphorus deficiency in genome of Triticum aestivum Chinese Spring. Acta Genet Sin, 1999, 26: 529–538 (in Chinese with English abstract) [35]Versaw W K, Harrison M J. A Chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell, 2002, 14: 1751–1766 [36]Mudge S R, Rar A L, Diatloff E, Smith F W. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J, 2002, 31: 341–353 [37]Preuss C P, Huang C Y, Gilliham M, Tyerman S D. Channel-like characteristics of the low-affinity barley phosphate transporter PHT1;6 when expressed in Xenopus oocytes. Plant Physiol, 2010, 152:1431–1441 [38]Chen J, Xu L, Cai Y. QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant & Soil, 2008, 313: 251–266 [39]李利华, 邱旭华, 李香花, 王石平, 练兴明. 低磷胁迫水稻根部基因表达谱研究. 中国科学C辑: 生命科学, 2009, 39: 549–558 Li L H, Qiu X H, Li X H, Wang S P, Lian X M. The research of rice root’s gene expression profile on the condition of phosphorus deficiency stress. Sci Sin Vitae, 2009, 39: 549–558 (in Chinese) [40]Kuraparthy V, Sood S, Dhaliwal H S, Chhuneja P, Gill B S. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet, 2007, 114: 285–294 [41]Luo Z W, Wu C I, Kearsky M J. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics, 2002, 161: 915–929 [42]Price A H. Believe it or not, QTLs are accurate. Trends Plant Sci, 2006, 11: 213–216 [43]The International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491: 711–716

[1] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[2] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[3] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[4] 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630.
[5] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[6] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[7] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[8] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[9] 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦InDel标记开发及应用[J]. 作物学报, 2020, 46(9): 1340-1350.
[10] 郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳. 利用RIL群体创制低山嵛酸花生新种质[J]. 作物学报, 2020, 46(5): 661-667.
[11] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461.
[12] 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353.
[13] 吴海涛, 张勇, 苏伯鸿, Lamlom F Sobhi, 邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677.
[14] 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19.
[15] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!