欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 714-727.doi: 10.3724/SP.J.1006.2019.84097

• 耕作栽培·生理生化 • 上一篇    下一篇

秸秆带状沟覆垄播对旱地马铃薯产量和水分利用效率的影响

陈玉章1,2,田慧慧1,李亚伟1,柴雨葳1,李瑞1,程宏波3,常磊1,柴守玺1,*()   

  1. 1 甘肃农业大学农学院 / 甘肃省干旱生境作物学重点实验室, 甘肃兰州 730070
    2 毕节市农业科学研究所, 贵州毕节 551700
    3 甘肃农业大学生命科学与技术学院 / 甘肃省干旱生境作物学重点实验室, 甘肃兰州 730070
  • 收稿日期:2018-07-14 接受日期:2019-01-12 出版日期:2019-05-12 网络出版日期:2019-02-01
  • 通讯作者: 柴守玺
  • 基金资助:
    本研究由甘肃省农牧厅专项(072-034035);国家自然科学基金项目(31760373)

Effects of straw strip mulching on furrows and planting in ridges on water use efficiency and tuber yield in dryland potato

Yu-Zhang CHEN1,2,Hui-Hui TIAN1,Ya-Wei LI1,Yu-Wei CHAI1,Rui LI1,Hong-Bo CHENG3,Lei CHANG1,Shou-Xi CHAI1,*()   

  1. 1 College of Agronomy, Gansu Agricultural University / Gansu Provincial Key Laboratory of Aridland Crop, Lanzhou 730070, Gansu, China
    2 Bijie Institute of Agricultural Sciences, Bijie 551700, Guizhou, China
    3 College of Life Science and Technology, Gansu Agricultural University / Gansu Provincial Key Laboratory of Aridland Crop, Lanzhou 730070, Gansu, China
  • Received:2018-07-14 Accepted:2019-01-12 Published:2019-05-12 Published online:2019-02-01
  • Contact: Shou-Xi CHAI
  • Supported by:
    This study was supported by the Special Research Project of Agriculture and Animal Husbandry Department of Gansu Province(072-034035);the National Natural Science Foundation of China(31760373)

摘要:

为探明西北半干旱雨养农业区马铃薯(Solanum tuberosum L.)生产中沟垄不同覆盖种植方式的增产效果和水分利用特点, 在2016年和2017年设置了大田试验, 包括秸秆带状沟覆宽垄种植、秸秆带状沟覆微垄种植、全覆膜沟垄种植和露地平作4个处理。结果表明, 在干旱年份(2016年), 沟垄覆盖种植可显著降低马铃薯全生育期耗水量6.1%~13.2%, 平均提高块茎形成期1.2~1.8 m土层含水量7.6%, 全覆膜沟垄作可显著提高淀粉积累期0~0.2 m土壤含水量30.3%。在平水年份(2017年), 除全覆膜沟垄种植显著降低马铃薯全生育期耗水量22.2%外, 其余处理与露地平作无显著差异; 沟垄覆盖种植0~2 m土壤含水量在马铃薯块茎形成期、块茎膨大期和淀粉积累期分别平均比露地平作高8.7%、13.0%和13.1%。与露地平作相比, 2个生长季沟垄覆盖种植可使马铃薯全生育期0~2 m土壤平均贮水量提高5.4%~15.5%, 单株生物量增加12.8%~147.4%, 成熟期株高增加21.1~39.7 cm, 进而马铃薯增产51.6%~88.2%, 水分利用效率提高68.2%~111.7%。以玉米秸秆带状沟覆微垄种植增产增效最显著, 2年平均产量、水分利用效率和纯经济收益分别较露地平作提高87.8%、97.5%和254.2%。因此, 玉米秸秆带状沟覆微垄种植能显著提高马铃薯产量和水分利用效率。此外, 与全覆膜沟垄种植相比, 秸秆带状沟覆微垄种植具有操作简单、无污染、投入产出比高等优点, 适宜在西北半干旱区马铃薯生产中应用。

关键词: 沟垄作, 覆膜, 秸秆带状沟覆, 旱作马铃薯, 产量, 水分利用效率

Abstract:

Field experiments were conducted to study the effects of different mulching materials and ridge-furrow widths on potato (Solanum tuberosum L.) growth, tuber yield, soil moisture and water use efficiency in a semiarid rain-fed ecosystem in northwest China in 2016 and 2017. Four treatments were performed: (1) alternating narrow furrows and wide ridges with corn straw strip mulching only on narrow furrows and planting in the wide ridges (RFWN); (2) alternating micro-ridge-furrows with corn straw strip mulching only on furrows and planting in the ridges (RFN); (3) alternating small and large ridges full mulching with black plastic film and planting in the large ridges (RFB), and (4) traditional-flat planting without mulching (CK). Compared with CK, mulching treatments significantly decreased total evapotranspiration by 6.1%-13.2%, increased average soil water content (1.2-1.8 m depth) by 7.6% at tuber initiation stage, and RFB treatment significantly increased soil water content (0-0.2 m) by 30.3% at starch accumulation stage in the dry year of 2016. In the normal precipitation year of 2017, the total evapotranspiration in RFB was 22.2% lower than that in CK, and there was no significant difference in total evapotranspiration observed among the RFWN, RFN and CK treatments. The average soil water content (0-2 m depth) in mulching treatments was 8.7%, 13.0%, and 13.1% higher than that in CK, respectively, at tuber initiation, tuber bulking and starch accumulation stage in 2017. Compared with CK, mulching treatments significantly increased soil water storage (0-2 m), weight of dry matter per plant and final plant height by 5.4%-15.5%, 12.8%-147.4%, and 21.1-39.7 cm, respectively, and thus enhanced tuber yield and water use efficiency by 51.6%-88.2% and 68.2%-111.7% in both years, respectively. The tuber yield, water use efficiency and net income for RFN treatment was the highest increasing on average by 87.8%, 97.5%, and 254.2%, respectively, in both years. In addition, RFN had the advantages of simple operation, the environmentally friendly and the highest input/output ratio compared with the treatment of plastic film mulching. Hence, RFN is the best cultivation model for dryland potato.

Key words: ridges-furrows culture, plastic film mulching, straw strip mulching only on furrows, dryland potato, tuber yield, water use efficiency

图1

2016年和2017年试验区马铃薯生长季降水分布"

图2

马铃薯田间种植示意图 RFWN: 秸秆带状沟覆宽垄种植; RFN: 秸秆带状沟覆微垄种植; RFB: 全覆膜沟垄作; CK: 传统平作无覆盖。"

图3

不同处理马铃薯各生育时期的土壤贮水量动态 SW: 播种期; SD: 苗期; BR: 分枝期; TI: 块茎形成期; TB: 块茎膨大期; SA: 淀粉积累期; MT: 成熟期。处理代号见图2。误差线表示平均值的标准误(n = 3)。标明不同小写字母的柱值表示各处理的平均值(n = 3)在P < 0.05水平上差异显著。"

图4

不同处理对马铃薯关键生育期水分垂直分布的影响 处理代号见图2。PWC: 永久凋萎系数; FWHC: 田间饱和持水量。误差线表示平均值的标准误(n = 3)。"

图5

不同处理对马铃薯单株干物质积累的影响 处理代号见图2。误差线表示平均值的标准误(n = 3)。同一生育时期标明不同小写字母的柱值表示各处理的平均值(n = 3)在P < 0.05水平上差异显著。"

表1

各生育时期马铃薯单株干物质与产量间的相关性"

出苗期
Seedling
分枝期
Branching
块茎形成期
Tuber initiation
块茎膨大期
Tuber bulking
成熟期
Maturity
相关系数r 0.566 0.629* 0.908** 0.963** 0.980**

图6

不同处理对马铃薯耗水量、成熟期株高、产量和水分利用效率的影响 处理代号见图2。误差线表示平均值的标准误(n = 3)。同一生长季标明不同小写字母的柱值表示各处理的平均值(n = 3)在P < 0.05水平上差异显著。"

表2

马铃薯主要农艺性状、水分利用效率与产量间的相关性"

小薯率
Small
tuber rate
中薯率
Medium
tuber rate
大薯率
Large
tuber rate
结薯数
Tuber number
per plant
单株薯重
Tuber weight
per plant
株高
Plant
height
水分利用效率
Water use
efficiency
耗水量
Water
consumption
相关系数r -0.732** -0.554 0.889** 0.954** 0.999** 0.990** 0.927** -0.324

表3

不同处理对马铃薯产量(15株)性状的影响"

表4

不同处理的经济效益分析"

年份
Year
处理
Treatment
总投入
Input cost
(Yuan hm-2)
总收入
Output revenue
(Yuan hm-2)
纯收益
Economic benefit
(Yuan hm-2)
投入产出比
Output/input
2016 RFWN 12000 11299.9 -700.1 0.94
RFN 12000 14411.6 2411.6 1.20
RFB 13650 14585.1 935.1 1.07
CK 10500 6873.9 -3626.1 0.65
2017 RFWN 12000 40156.3 28156.3 3.35
RFN 12000 43492.8 31492.8 3.62
RFB 13650 29049.6 15399.6 2.13
CK 10500 17625.3 7125.3 1.68
[1] Zhao H, Wang R Y, Ma B L, Xiong Y C, Qiang S C, Wang C L, Liu C A, Li F M . Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crops Res, 2014,161, 137-148.
doi: 10.1016/j.fcr.2014.02.013
[2] LI Q, Li H B, Li Z, Chen Y L . Mulching improves yield and water-use efficiency of potato cropping in China: a meta-analysis. Field Crops Res, 2018,221:50-60.
doi: 10.1016/j.fcr.2018.02.017
[3] 柴守玺, 杨长刚, 张淑芳, 陈恒洪, 常磊 . 不同覆膜方式对旱地冬小麦土壤水分和产量的影响. 作物学报, 2015,41:787-796.
Chai S X, Yang C G, Zhang S F, Chen H H, Chang L . Effects of plastic mulching modes on soil moisture and grain yield in dryland winter wheat. Acta Agron Sin, 2015,41:787-796 (in Chinese with English abstract).
[4] Gan Y T, Kadambot H S, Turner N C, Li X G, Niu J Y, Chao Y, Liu L P, Chai Q . Ridge-Furrow mulching systems—an innovative technique for boosting crop productivity in semiarid Rain-Fed environments. Adv Agron, 2013,118:429-476.
doi: 10.1016/B978-0-12-405942-9.00007-4
[5] 崔石新, 樊明寿, 贾立国, 秦永林, 陈杨, 王玉芬 . 沟垄集雨技术研究进展及其在旱作马铃薯生产中的应用潜力. 作物杂志, 2016, ( 5):8-12.
Cui S X, Fan M S, Jia L G, Qin Y L, Chen Y, Wang Y F . Progress of field rain-harvesting technology and its use potential in arid potato production. Crops, 2016, ( 5):8-12 (in Chinese with English abstract).
[6] Mo F, Li X Y, Niu F J, Zhang C R, Li S K, Zhang L . Alternating small and large ridges with full film mulching increase linseed ( Linum usitatissimum L.) productivity and economic benefit in a rainfed semiarid environment. Field Crops Res, 2018,219:120-130.
[7] Mo F, Wang J Y, Zhou H, Luo C L, Zhang X F, Li X Y, Li F M, Xiong L B, Kavagi L, Nguluu S N, Xiong Y C . Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize ( Zea mays L.): an adaptive management in East African Plateau. Agric For Meteorol, 2017,236:100-112.
[8] Wang L, Li X G, Guan Z H, Jia B, Turner N C, Li F M . The effects of plastic-film mulch on the grain yield and root biomass of maize vary with cultivar in a cold semiarid environment. Field Crops Res, 2018,216:89-99.
doi: 10.1016/j.fcr.2017.11.010
[9] Ghosh P K, Dayal D, Bandyopadhyay K K, Mohanty M . Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut. Field Crops Res, 2006,99:76-86.
doi: 10.1016/j.fcr.2006.03.004
[10] Ramakrishna A, Minh T H, Wani S P, Dinh L T . Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res, 2006,95:115-125.
doi: 10.1016/j.fcr.2005.01.030
[11] 张淑敏, 宁堂原, 刘振, 王斌, 孙涛, 张学鹏, 贺贞昆, 杨燕, 米庆华 . 不同类型地膜覆盖的抑草与水热效应及其对马铃薯产量和品质的影响. 作物学报, 2017,43:571-580.
Zhang S M, Ning T Y, Liu Z, Wang B, Sun T, Zhang X P, He Z K, Yang Y, Mi Q H . Weed infestation, soil moisture, and temperature under mulching cultivation with different films and effects on yield and quality of potato. Acta Agron Sin, 2017,43:571-580 (in Chinese with English abstract).
[12] Qin S H, Zhang J L, Dai H L, Wang D, Li D M . Effect of ridge-furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agric Water Manage, 2014,131:87-94.
doi: 10.1016/j.agwat.2013.09.015
[13] 王红丽, 张绪成, 于显枫, 马一凡, 侯慧芝 . 黑色地膜覆盖的土壤水热效应及其对马铃薯产量的影响. 生态学报, 2016,36:5215-5226.
Wang H L, Zhang X C, Yu X F, Ma Y F, Hou H Z . Effect of using black plastic film as mulch on soil temperature and moisture and potato yield. Acta Ecol Sin, 2016,36:5215-5226 (in Chinese with English abstract).
[14] 姚玉璧, 王润元, 邓振镛, 韩树林, 邢托勤 . 黄土高原半干旱区气候变化及其对马铃薯生长发育的影响. 应用生态学报, 2010,21:379-385.
Yao Y B, Wang R Y, Deng Z Y, Han S L, Xing T Q . Effects of climate change on potato growth in semiarid region of Loess Plateau China. Chin J Appl Ecol, 2010,21:379-385.
[15] 甘肃经济日报. 今年甘肃省马铃薯晚疫病发生面积或超800万亩. 甘肃经济日报. 2013-07-17. 网址: .
Gansu Economic Daily. The area of potato late blight in Gansu Province May exceed 8 million mu in 2013. Gansu Economic Daily. 2013-07-17. Available online: (in Chinese).
[16] 中华人民共和国农业部. “十三五”农业科技发展规划. 2017. .
Ministry of Agricultural of the People’s Republic of China. China’s 13th Five-year Agricultural Scientific and Technological Plan. 2017. (in Chinese).
[17] 包建财, 郁继华, 冯致, 陈佰鸿, 雷成, 杨娟 . 西部七省区作物秸秆资源分布及利用现状. 应用生态学报, 2014,25:181-187.
Bao J C, Yu J H, Feng Z, Chen B H, Lei C, Yang J . Situation of distribution and utilization of crop straw resources in seven western provinces, China. Chin J Appl Ecol, 2014,25:181-187 (in Chinese with English abstract).
[18] Liu E K, He W Q, Yan C R . ‘White revolution’ to ‘white pollution’-agricultural plastic film mulch in China. Environ Res Lett, 2014,9:091001.
doi: 10.1088/1748-9326/9/9/091001
[19] Zhang D, Liu H B, Hu W L, Qin X H, Ma X W, Yan C R, Wang H Y . The status and distribution characteristics of residual mulching film in Xinjiang, China. J Integr Agric, 2016,15:2639-2646.
doi: 10.1016/S2095-3119(15)61240-0
[20] 蒋锐, 郭升, 马德帝 . 旱地雨养农业覆膜体系及其土壤生态环境效应研究. 中国生态农业学报, 2018,26:317-328.
Jiang R, Guo S, Ma D D . Plastic film mulching system and the impact on soil ecological environment in rain-fed drylands of China. Chin J Eco-Agric, 2018,26:317-328.
[21] 柴守玺 . 一种旱地秸秆带状覆盖作物种植新技术. 甘肃农业大学学报, 2014, ( 5):42.
Chai S X . A new planting technology of straw strip mulching crops in dry land. J Gansu Agric Univ, 2014, ( 5):42 (in Chinese).
[22] 甘肃省农业技术推广总站, 甘肃农业大学. 甘肃省粮油作物栽培增产五大潜力新技术. 甘肃农业, 2015, ( 25):47.
Gansu Agricultural Technology Extension Station, Gansu Agricultural University . Five potential techniques for increasing yield of grain and oil crops in Gansu province. Gansu Nongye, 2015, ( 25):47(in Chinese).
[23] 韩凡香, 常磊, 柴守玺, 杨长刚, 程宏波, 杨德龙, 李辉, 李博文, 李守蕾, 宋亚丽, 兰雪梅 . 半干旱雨养区秸秆带状覆盖种植对土壤水分及马铃薯产量的影响. 中国生态农业学报, 2016,24:874-882.
Han F X, Chang L, Chai S X, Yang C G, Cheng H B, Yang D L, Li H, Li B W, Li S L, Song Y L, Lan X M . Effect of straw strip covering on ridges on soil water content and potato yield under rain-fed semiarid conditions. Chin J Eco-Agric, 2016,24:874-882 (in Chinese with English abstract).
[24] 李辉, 柴守玺, 常磊, 吴建民, 程宏波, 韩凡香, 李博文, 兰雪梅, 王芳, 李瑞 . 西北半干旱区秸秆带状覆盖对土壤水分及马铃薯产量的影响. 水土保持学报, 2017,31(6):148-156.
Li H, Chai S X, Chang L, Wu J M, Cheng H B, Han F X, Li B W, Lan X M, Wang F, Li R . Effects of straw strips mulching on soil moisture and potato yield in northwest semi-arid region of China. J Soil Water Conserv, 2017,31(6):148-156 (in Chinese with English abstract).
[25] 侯慧芝, 王娟, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡 . 半干旱区全膜覆盖垄上微沟种植对土壤水热及马铃薯产量的影响. 作物学报, 2015,41:1582-1590.
Hou H Z, Wang J, Zhang X C, Fang Y J, Yu X F, Wang H L, Ma Y F . Effects of min-ditch planting with plastic mulching in ridges on soil water content, temperature and potato yield in rain-fed semiarid region. Acta Agron Sin, 2015,41:1582-1590 (in Chinese with English abstract).
[26] Hu Q, Pan F F, Pan X B, Zhang D, Yang N, Pan Z H, Zhao P Y, Tuo D B . Effects of a ridge-furrow micro-field rainwater- harvesting system on potato yield in a semi-arid region. Field Crops Res, 2014,166:92-101.
doi: 10.1016/j.fcr.2014.06.005
[27] Edwards L, Burney J R, Richter G, Macrae A H . Evaluation of compost and straw mulching on soil-loss characteristics in erosion plots of potatoes in Prince Edward Island, Canada. Agric Ecosyst Environ, 2000,81:217-222.
doi: 10.1016/S0167-8809(00)00162-6
[28] 李辉, 吴建民, 柴守玺, 常磊, 韩凡香, 程宏波 . 玉米秸秆带状覆盖对西北旱地土壤温度及马铃薯产量的影响. 中国沙漠, 2018,38:592-599.
Li H, Wu J M, Chai S X, Chang L, Han F X, Cheng H B . Effects of corn straw strips mulching on soil temperature and potato yield in northwest arid land of China. J Desert Res, 2018,38:592-599 (in Chinese with English abstract).
[29] 蔡太义, 陈志超, 黄会娟, 黄耀威, 张合兵, 刘昌华, 贾志宽 . 不同秸秆覆盖模式下农田土壤水温效应研究. 农业环境科学学报, 2013,32:1396-1404.
Cai T Y, Chen Z C, Huang H J, Huang Y W, Zhang H B, Liu C H, Jia Z K . Effects of different modes of cropping systems using straw mulch on the soil temperature and soil water on the Weibei highland region of China. J Agro-environ Sci, 2013,32:1396-1404 (in Chinese with English abstract).
[30] 李荣, 王艳丽, 吴鹏年, 孙瑞萍, 仇佳欣, 苏梅, 侯贤清 . 宁南旱区沟垄覆盖改善土壤水热状况提高马铃薯产量. 农业工程学报, 2017,33(10):168-175.
Li R, Wang Y L, Wu P N, Sun R P, Qiu J X, Su M, Hou X Q . Ridge and furrow mulching improving soil water-temperature condition and increasing potato yield in dry-farming areas of South Ningxia. Trans CSAE, 2017,33(10):168-175 (in Chinese with English abstract).
[31] Haverkort A J, Struik P C . Yield levels of potato crops: Recent achievements and future prospects. Field Crops Res, 2015,182:76-85.
[32] Monneveux P, Ramírez D A, María-Teresa P. Drought tolerance in potato (S. tuberosum L .) : can we learn from drought tolerance research in cereals? Plant Sci, 2013,205/206:76-86.
[33] Renault D, Wallender W W . Nutritional water productivity and diets: from “crop per drop” towards “nutrition per drop”. Agric Water Manage, 2000,45:275-296.
doi: 10.1016/S0378-3774(99)00107-9
[34] Ierna A, Giovanni M . Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime. Agric Water Manage, 2012,115:276-284.
doi: 10.1016/j.agwat.2012.09.011
[35] 谢军红, 李玲玲, 张仁陟, 柴强 . 覆膜、沟垄作对旱作农田玉米产量和水分利用的叠加效应. 作物学报, 2018,44:268-277.
Xie J H, Li L L, Zhang R Z, Chai Q . Superimposition effect of film-mulching and furrow ridging culture on maize grain and WUE in Loess Plateau. Acta Agron Sin, 2018,44:268-277 (in Chinese with English abstract).
[36] Wang T C, Wei L, Wang H Z, Ma S C, Ma B L . Responses of rainwater conservation, precipitation-use efficiency and grain yield of summer maize to a furrow-planting and straw-mulching system in northern China. Field Crops Res, 2011,124:223-230.
doi: 10.1016/j.fcr.2011.06.014
[37] Lu X J, Li Z Z, Sun Z H, Bu Q G . Straw mulching reduces maize yield, water, and nitrogen use in northeastern China. Agron J, 2015,107:406-414.
doi: 10.2134/agronj14.0454
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!