欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1398-1406.doi: 10.3724/SP.J.1006.2019.81093

• 耕作栽培· 生理生化 • 上一篇    下一篇

地上地下互作强度对小麦间作玉米光合特性的影响

杜进勇,柴强(),王一帆,范虹,胡发龙,殷文,李登业   

  1. 甘肃省干旱生境作物学重点实验室/甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2018-12-27 接受日期:2019-04-15 出版日期:2019-09-12 网络出版日期:2019-08-13
  • 通讯作者: 柴强
  • 作者简介:E-mail: 18368919441@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31771738);国家“十二五”科技支撑计划资助(2012BAD14B10)

Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping

DU Jin-Yong,CHAI Qiang(),WANG Yi-Fan,FAN Hong,HU Fa-Long,YIN Wen,LI Deng-Ye   

  1. Gansu Provincial Key Laboratory of Arid Land Crop Science/Faculty of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2018-12-27 Accepted:2019-04-15 Published:2019-09-12 Published online:2019-08-13
  • Contact: Qiang CHAI
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31771738);the “Twelfth Five-Year” National Key Technology Support Program of China(2012BAD14B10)

摘要:

针对地上、地下互作对间作群体光合特性影响研究相对薄弱, 生产实践中缺乏间作系统精确调控的相关理论依据等问题, 本研究于2015—2017年, 以小麦间作玉米为对象, 通过设塑料布隔根(P, 无根间作用)、尼龙网隔根(N, 部分根间作用)和不隔根(完全根间作用) 3种根系分隔方式, 以及低(M1, 45,000株 hm -2)、高(M2, 52,500株 hm -2) 2个玉米密度, 系统分析了地上地下互作强度对间作作物群体光合特性的影响。结果表明, 地上地下完全互作可显著增加间作群体的光合势, 提高间作玉米的净光合速率, 增大间作群体全生育时期的净同化率。与低密度相比, 增大玉米密度使间作群体全生育期光合势平均提高12.4%; 与尼龙网隔根和塑料布隔根相比, 不隔根处理光合势提高了10.3%和29.0%。增大密度使间作玉米净光合速率比低密度平均提高11.2%; 不隔根间作玉米生育期净光合速率较尼龙网隔根和塑料布隔根平均提高4.7%和7.7%。玉米密度对间作系统净同化率影响不显著; 不隔根处理全生育时期净同化率比尼龙网隔根和塑料布隔根平均提高11.5%和14.8%, 生育后期, 间作群体的光合势与产量极显著正相关。因此, 地上地下协同影响作物群体光合势及间作组分作物的净光合速率, 从而影响间作群体的净同化率, 可通过增加密度和根间互作来促进协同作用, 增加间作系统产出。

关键词: 作物间作, 密度, 根间作用, 互作强度, 光合特性

Abstract:

A field experiment of wheat-maize intercropping was conducted from 2015 to 2017, with three root separation treatment adopted to produce the different below-ground interactions: (i) root separation with producing plastic cloth no below-ground interaction (P); (ii) root separation with producing nylon mesh partial below-ground interaction (N); and (iii) no root separation, producing complete below-ground interaction. Two planting densities; M1 and M2 (with 45,000 and 52,500 maize plants per hectare), were employed to create the different above-ground interactions. The above- and below-ground complete interaction significantly improved the leaf area duration (LAD), net assimilation rate (NAR) of the intercropped, and net photosynthetic rate (Pn) of the intercropped maize. Compared with low density treatment, the LAD of high maize density was improved by an average of 12.4%. Compared with nylon mesh and plastic sheet root barriers no root barrier increased LAD by 10.3% and 29.0%. Maize Pn was improved by 11.2% under high density than under low density. No root barrier improved Pn by 4.7% and 7.7% as compared with nylon mesh and plastic sheet root barriers, respectively. There was no significant effect of maize density on NAR of the intercropping system. No root barrier improved NAR by 11.5% and 14.8% as compared with nylon mesh and plastic sheet root barriers, respectively. During the late growth period, grain yield was significantly correlated with LAD. The above- and below-ground interactions synergistically affected LAD and Pn, which influenced NAR of the intercropping system. Therefore, the synergistic effect could be promoted by increasing maize density and above- and below-ground interactions, which would promote the intercropping system productivity.

Key words: crops intercropping, planting density, root interaction, intensity of interactions, photosynthetic characteristics

图1

小麦间作玉米田间结构及隔根示意图"

图2

间作小麦、玉米及群体LAD变化特征 W/M1: 玉米间作小麦低密度不隔根; W/M2: 玉米间作小麦高密度不隔根; NW/M1: 玉米间作小麦低密度尼龙网隔根; NW/M2: 玉米间作小麦高密度尼龙网隔根; PW/M1: 玉米间作小麦低密度塑料布隔根; PW/M2: 玉米间作小麦高密度塑料布隔根。误差棒为SE, n = 3。"

图3

间作小麦、玉米的净光合速率变化特征 缩写同图2。误差棒为SE, n = 3。"

图4

间作小麦、玉米及群体净同化率动态变化特征 缩写同图2。误差棒为SE, n = 3。"

图5

间作小麦、玉米混合籽粒产量 缩写同图2。误差棒为SE, n = 3。图柱上不同字母表示品种之间在0.05水平差异显著。"

表1

籽粒产量与净光合速率(Pn)、光合势(LAD)的相关性"

参数
Parameter
出苗后天数 Days after the emergence of seedling
15-30 d 30-45 d 45-60 d 60-75 d 75-90 d 90-105 d 105-120 d 120-135 d
Pn 小麦Wheat 0.127 -0.106 -0.521**
玉米Maize 0.610** 0.008 0.180 0.282 -0.332
LAD 间作 Intercropping -0.574 -0.247 -0.097 0.610** 0.752** 0.688** 0.749** 0.671**
[1] 张黛静, 马雪, 王晓东, 杨杰瑞, 王多多, 王真, 陈惠婷, 李春喜 . 品种与密度对豫中地区小麦光合生理特性及光能利用率的影响. 麦类作物学报, 2014,34:388-394.
Zhang D J, Ma X, Wang X D, Yang J R, Wang D D, Wang Z, Chen H T, Li C X . Effects of variety and density on photosynthetic traits and light utilization efficiency of wheat in middle Henan province. J Triticeae Crops, 2014,34:388-394 (in Chinese with English abstract).
[2] 王自奎, 吴普特, 赵西宁, 李正中, 付小军 . 作物间套作群体光能截获和利用机理研究进展. 自然资源学报, 2015,30:1057-1066.
Wang Z C, Wu P T, Zhao X N, Li Z Z, Fu X J . A review of light interception and utilization by intercropped canopies. J Nat Res, 2015,30:1057-1066 (in Chinese with English abstract).
[3] Lithourgidis A S, Dordas C A, Damalas C A, Vlachostergios D N . Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci, 2011,5:396-410.
[4] 周海燕, 柴强, 黄高宝, 白锦龙 . 绿洲灌区典型间作模式的产量和光能利用效率. 甘肃农业大学学报, 2012,47(6):68-73.
Zhou H Y, Chai Q, Huang G B, Bai J L . The yield and light use efficiency of different intercropping systems in the Hexi Oasis irrigation area. J Gansu Agric Univ, 2012,47(6):68-73 (in Chinese with English abstract).
[5] 李洪岐, 蔺海明, 梁书荣, 赵会杰, 王俊忠 . 密度和种植方式对夏玉米酶活性和产量的影响. 生态学报, 2012,32:6584-6590.
Li H Q, Lin H M, Liang S R, Zhao H J, Wang J Z . Effects of planting densities and modes on activities of some enzymes and yield in summer maize. Acta Ecol Sin. 2012,32:6584-6590 (in Chinese with English abstract).
[6] 黄高宝 . 集约栽培条件下间套作的光能利用理论发展及其应用. 作物学报, 1999,25:16-24.
Huang G B . Development of light utilization theory for wheat/ corn intercropping in condition of intensive cultivation. Acta Agron Sin, 1999,25:16-24 (in Chinese with English abstract).
[7] 殷文, 赵财, 于爱忠, 柴强, 胡发龙, 冯福学 . 秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响. 作物学报, 2015,41:633-641.
Yin W, Zhao C, Yu A Z, Chai Q, Hu F L, Feng F X . Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat-maize intercropping system. Acta Agron Sin, 2015,41:633-641 (in Chinese with English abstract).
[8] Firbank L G, Watkinso A R. On the effects of competition: from monocultures to mixtures. In: Grace J B, Tilman D, eds. Perspectives on Plant Competition. San Diego: Academic Press, Inc. 1990. pp 165-192.
[9] 张宏芝, 陈兴武, 雷钧杰, 乔旭, 赵奇, 高永红 . 杏麦间作模式下小麦光合速率、叶绿素荧光及产量对追氮量和播种密度的响应. 麦类作物学报, 2015,35:387-393.
Zhang H Z, Chen X B, Lei J J, Qiao X, Zhao Q, Gao Y H . Effect of planting density and topdressing nitrogen on photosynthetic rate and chlorophyll fluorescence and yield of wheat under apricot-wheat intercropping. J Triticeae Crops, 2015,35:387-393 (in Chinese with English abstract).
[10] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强 . 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017,43:754-762
Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q . Synergistic effect of root interaction and density on yield and yield components of wheat-maize intercropping system. Acta Agron Sin, 2017,43:754-762 (in Chinese with English abstract)
[11] 黄进勇, 李新平, 孙敦立 . 黄淮海平原冬小麦-春玉米-夏玉米复合种植模式生理生态效应研究. 应用生态学报, 2003,14:51-56.
Huang J Y, Li X P, Sun D L . Ecophysiological effects of multiple cropping of winter wheat-spring corn-summer corn in Huang-Huai-Hai plain. Chin J Appl Ecol, 2003,14:51-56 (in Chinese with English abstract).
[12] 唐秀梅, 钟瑞春, 揭红科, 王泽平, 韩柱强 . 间作遮荫对花生光合作用及叶绿素荧光特性的影响. 西南农业学报, 2011,24:1703-1707.
Tang X M, Zhong R C, Jie H K, Wang Z P, Han Z Q . Effect of shading on photosynthesis and chlorophyll fluorescence characteristic of peanut under different inter-row space in cassava- peanut intercropping. Southwest Chin J Agric Sci, 2011,24:1703-1707 (in Chinese with English abstract).
[13] 焦念元, 李亚辉, 刘领, 齐付国, 尹飞, 宁堂原, 李增嘉, 付国占 . 隔根对玉米-花生间作光合特性与间作优势的影响. 植物生理学报, 2016,52:886-894.
Jiao N Y, Li Y H, Liu L, Qi G F, Yin F, Ning T Y, Li Z J, Fu Z G . Effects of root barrier on photosynthetic characteristics and intercropping advantage of maize-peanut intercropping. Plant Physiol J, 2016,52:886-894 (in Chinese with English abstract).
[14] 张晓艳, 杜吉到, 郑殿峰, 宋春艳, 陆旺, 宋丽萍 . 密度对大豆群体叶面积指数及干物质积累分配的影响. 大豆科学, 2011,30:96-100.
Zhang X Y, Du J D, Zheng D F, Song C Y, Lu W, Song L P . Effect of density on leaf area index, dry matter accumulation and distribution in soybean population. Soybean Sci, 2011,30:96-100 (in Chinese with English abstract).
[15] 李向岭, 李从锋, 侯玉虹, 葛均筑, 赵明 . 不同播期夏玉米产量性能动态指标及其生态效应. 中国农业科学, 2012,45:1074-1083.
Li X L, Li C F, Hou Y H, Ge J Z, Zhao M . Dynamic characteristics of summer maize yield performance in different planting dates and its effect of ecological factors. Agric Sci Sin, 2012,45:1074-1083 (in Chinese with English abstract).
[16] 陈国平 . 玉米的干物质生产与分配. 玉米科学, 1994, ( 1):48-53.
Chen G P . Dry matter production and distribution of maize, Maize Sci, 1994, ( 1):48-53.
[17] 吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁 . 地上部与地下部作用对玉米/大豆间作优势的影响. 农业机械学报, 2014,45(1):129-136.
Lyu Y, Wu P T, Chen X L, Wang Y B, Zhao X N . Effect of above- and below-ground interactions on maize/soybean intercropping advantage. Trans CSAM, 2014,45(1):129-136.
[18] Awal M A, Koshi H, Ikeda T . Radiation interception and use by maize/peanut intercrop canopy. Agric For Meteorol, 2006,139:74-83.
[19] Maddonni G A, Otegui M E, Cirilo A G . Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res, 2001,71:183-193.
[20] 陈雨海, 余松烈, 于振文 . 小麦生长后期群体光截获量及其分布与产量的关系. 作物学报, 2003,29:730-734.
Chen Y H, Yu S L, Yu Z W . Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agron Sin, 2003,29:730-734 (in Chinese with English abstract).
[21] 吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁 . 玉米/大豆间作系统的作物资源竞争. 应用生态学报, 2014,25:139-146
Lyu Y, Wu P T, Chen X L, Wang Y B, Zhao X N . Resource competition in maize-soybean intercropping system, Chin J Appl Ecol, 2014,25:139-146 (in Chinese with English abstract).
[22] 焦念元, 宁堂原, 杨萌珂, 付国占, 尹飞, 徐国伟, 李增嘉 . 玉米花生间作对玉米光合特性及产量形成的影响. 生态学报, 2013,33:4324-4330.
Jiao N Y, Ning T Y, Yang M K, Fu Z G, Yin F, Xu G W, Li Z J . Effects of maize-peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecol Sin, 2013,33:4324-4330 (in Chinese with English abstract).
[23] 刘广才, 杨祁峰, 李隆 . 小麦/玉米间作优势及地上部与地下部因素的相对贡献研究. 干旱地区农业研究, 2005,38:1787-1795.
Liu G C, Yang Q F, Li L . Intercropping advantage and contribution of above-ground and under-ground interactions in wheat- maize intercropping. Agric Res Arid Areas, 2005,38:1787-1795 (in Chinese with English abstract).
[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[4] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[5] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[6] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[7] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929-941.
[8] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[9] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[10] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量[J]. 作物学报, 2021, 47(12): 2481-2489.
[11] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[12] 任媛媛, 张莉, 郁耀闯, 张彦军, 张岁岐. 大豆种植密度对玉米/大豆间作系统产量形成的竞争效应分析[J]. 作物学报, 2021, 47(10): 1978-1987.
[13] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[14] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
[15] 金容,李钟,杨云,周芳,杜伦静,李小龙,孔凡磊,袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!