欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (01): 74-83.doi: 10.3724/SP.J.1006.2020.93026

• 耕作栽培·生理生化 • 上一篇    下一篇

西南玉米机械粒收籽粒破碎率现状及影响因素分析

赵波1,李小龙1,周茂林2,宋碧3,雷恩4,李钟5,吴雅薇1,袁继超1,孔凡磊1,*()   

  1. 1 四川农业大学农学院/作物生理生态及栽培四川省重点实验室, 四川成都 611130
    2 重庆市农业科学院玉米研究所, 重庆401329
    3 贵州大学农学院, 贵州贵阳 550025
    4 红河学院, 云南红河 661106
    5 南充市农业科学院, 四川南充 637000
  • 收稿日期:2019-04-18 接受日期:2019-08-09 出版日期:2020-01-12 网络出版日期:2019-09-01
  • 通讯作者: 孔凡磊
  • 作者简介:E-mail: sicauzb4633@163.com
  • 基金资助:
    本研究由国家重点研发计划项目资助(2016YFD0300307);本研究由国家重点研发计划项目资助(2017YFD0301704)

Current status and influencing factors of broken rate in mechanical grain harvesting of maize in Southwest China

ZHAO Bo1,LI Xiao-Long1,ZHOU Mao-Lin2,SONG Bi3,LEI En4,LI Zhong5,WU Ya-Wei1,YUAN Ji-Chao1,KONG Fan-Lei1,*()   

  1. 1 College of Agronomy, Sichuan Agricultural University/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
    2 Corn Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
    3 College of Agronomy, Guizhou Agricultural University, Guiyang 550025, Guizhou, China
    4 Honghe University, Honghe 661106, Yunnan, China
    5 Nanchong Academy of Agricultural Sciences, Nanchong 637000, Sichuan, China
  • Received:2019-04-18 Accepted:2019-08-09 Published:2020-01-12 Published online:2019-09-01
  • Contact: Fan-Lei KONG
  • Supported by:
    This study was supported by the State Key Research and Development Program of China(2016YFD0300307);This study was supported by the State Key Research and Development Program of China(2017YFD0301704)

摘要:

籽粒破碎率高是西南玉米机械粒收技术发展和应用的主要限制因素。明确当前西南玉米机械粒收籽粒破碎率现状, 研究其主要影响因素, 对推动西南玉米机械粒收的发展具有重要意义。利用2017—2018年在西南区开展的多点多品种系列粒收试验获得的788组籽粒破碎率样本数据, 分析了西南玉米机械粒收籽粒破碎率现状, 并于2018年采用同一机型、同一操作人员开展多品种、大跨度多收期试验, 调查不同收获时期籽粒破碎率、含水率、力学强度变化, 分析籽粒含水率、力学强度与破碎率的关系。结果表明, 当前西南玉米机械粒收籽粒破碎率范围为0.54%~42.72%, 平均值为8.34%。随机械粒收时期推迟, 籽粒含水率下降, 籽粒力学强度增加, 破碎率先降低后逐渐升高。破碎率(y)与籽粒含水率(x)间的关系符合y = 0.0329x 2-1.3328x+15.529 (R 2= 0.5467 **)方程, 在籽粒含水率为20.26%时破碎率最低, 破碎率≤5%的籽粒含水率范围为10.76%~29.76%; 破碎率(y)与籽粒立面(x立面)和侧面(x侧面)压碎强度的关系符合y = 0.0006x立面 2-0.2692x立面+32.7030 (R 2= 0.3138 **)和y = 0.0021x侧面 2-0.6092x侧面+46.979 (R 2= 0.3790 **)方程, 当籽粒立面和侧面压碎强度为224.33 N和145.05 N时破碎率最低。籽粒压碎强度与含水率呈极显著负相关。随收获时期推迟, 籽粒含水率下降导致其力学强度的改变是影响破碎率变化的主要原因, 通过选育和选用后期立秆能力强、籽粒脱水快的品种, 当籽粒含水率降至28%以下进行机械粒收是降低西南玉米机械粒收籽粒破碎率的重要举措。

关键词: 西南玉米, 机械粒收, 破碎率, 含水率, 力学强度

Abstract:

Maize mechanical grain harvesting is the development direction of maize production in Southwest China. High grain broken rate is the main limiting factor for the development and application of this technology. It is of great significance to clarify the current status of broken rate of mechanical grain harvesting in Southwest China, to study the main influencing factors, so as to promote the development of mechanical grain harvesting in Southwest China. Using 788 sets of sample data of grain broken rate obtained from a series of multi-point and multi-variety grain harvesting experiments conducted in Southwest China from 2017 to 2018, the present situation of mechanical grain broken rate in Southwest China was analyzed. In 2018, the same machine and operator were used to carry out multi-variety, long-span and multi-harvest experiments to investigate the changes of grain broken rate, grain moisture content and grain mechanical strength in different harvest periods, and to analyze the relationship among grain moisture content, grain mechanical strength and broken rate. The broken rate of mechanically harvested grains was 0.54%-42.72% with the average of 8.34% in Southwest China. With the delayed mechanical grain harvesting, the moisture content of grains decreased, the crushing strength of grains increased, and the broken rate of grains decreased first and then increased. The relationship between broken rate (y) and grain moisture content (x) was in accordance with the equation y = 0.0329x 2- 1.3328x + 15.529 (R 2= 0.5467 **). The broken rate was the lowest when the moisture content of grains was 20.26%. The range of moisture content of the grains with a broken rate less than 5% was 10.76%-29.76%. The relationship between broken rate (y) and crushing strength of grain facade (xfacade) and side (xside) was in accordance with the equations of y = 0.0006xfacade 2 - 0.2692xfacade + 32.7030 (R 2 = 0.3138 **) and y = 0.0021xside 2 - 0.6092xside + 46.979 (R 2 = 0.3790 **), respectively. When the crushing strength of grain facade and side was 224.33 N and 145.05 N, the broken rate was the lowest. With delaying harvest time, the change of mechanical strength caused by the decrease of grain moisture content may be the main reason affecting the change of broken rate. Breeding and selecting varieties with strong standing pole ability and quick dehydration, making the moisture content of grain below 28%, is an important measure to reduce the broken rate of mechanical grain harvesting in Southwest China.

Key words: southwest maize, mechanical grain harvesting, broken rate, moisture content, mechanical strength

表1

机械粒收试验品种信息(2017-2018)"

地点
Location
品种
Cultivar
收获机型
Harvester type
四川中江
Zhongjiang,
Sichuan
正红505, 中单808, 渝单8号, 荣玉1510, 瑞玉11, 渝单30, 丹玉336, 正红6号, 郑单958, 粒收1号, 渝豪单6号, 仲玉3号, 成单30, 正红211, 正红431, 先玉1171, 延科288, 国豪玉7号, 华试919, 蠡玉16, 奥玉3111, 联创808, 瑞玉16, 华凯2号
Zhenghong 505, Zhongdan 808, Yudan 8, Rongyu 1510, Ruiyu 11, Yudan 30, Danyu 336, Zhenghong 6, Zhengdan 958, Lishou 1, Yuhaodan 6, Zhongyu 3, Chengdan 30, Zhenghong 211, Zhenghong 431, Xianyu 1171, Yanke 288, Guohaoyu 7, Huashi 919, Liyu 16, Aoyu 3111,
Lianchuang 808, Ruiyu 16, Huakai 2
久保田4LZY-1.8B
Kubota 4LZY-1.8B
四川南充
Nanchong,
Sichuan
仲玉3号, 正红505, 众望玉88, 郑单958, 粒收1号, 先玉1171, 正红431, 渝单8号, 中玉335, 正红6号, 渝单30
Zhongyu 3, Zhenghong 505, Zhongwangyu 88, Zhengdan 958, Lishou 1, Xianyu 1171, Zhenghong 431, Yudan 8, Zhongyu 335, Zhenghong 6, Yudan 30
艾禾4LZT-4.0ZB
Aihe 4LZT-4.0ZB
重庆潼南
Tongnan,
Chongqing
迪卡M9, 粒收1号, 渝单8号, 先玉1171, 正红6号, 正红431, 荣玉1510, 仲玉3号, 渝单30, 成单30, 正红505, 渝豪单6号, 中单808, 渝单50, 必胜118, 金穗33, 贵单8号, 黔1403, 帮豪58, 新玉503, 资玉6号, 郑单958, 中玉335, 中单901
DikaM9, Lishou 1, Yudan 8, Xianyu 1171, Zhenghong 6, Zhenghong 431, Rongyu 1510, Zhongyu 3, Yudan 30, Chengdan 30, Zhonghong 505, Yuhaodan 6, Zhongdan 808, Yudan 50, Bisheng 118, Jinsui 33, Guidan 8, Qian 1403, Banghao 58, Xinyu 503, Ziyu 6, Zhengdan 958, Zhongyu 335, Zhongdan 901
沃德4LZ-3.0E
Wode 4LZ-3.0E
贵州安顺
Anshun,
Guizhou
先玉1171, 渝单8号, 正红6号, 筑黄127/S02, 珍禾99, 爱农001, 正红431, 金玉932, 靖丰18, 荣玉1510, 仲玉3号, 靖单15, 粒收1号, 金玉306, 筑黄99M/21, 黔单16, 靖单12, 靖玉1号, 郑单958, 金玉838, 新中玉801, 靖单14, 宣黄单17, 金玉579
Xianyu 1171, Yudan 8, Zhenghong 6, Zhuhuang 127/S02, Zhenhe 99, Ainong 001, Zhenghong 431, Jinyu 932, Jingfeng 18, Rongyu 1510, Zhongyu 3, Jingdan15, Lishou 1, Jinyu 306, Zhuhuang 99M/21, Qiandan 16, Jingdan 12, Jingyu 1, Zhengdan 958, Jinyu 838, Xinzhongyu 801, Jingdan 14, Xuanhuangdan 17, Jinyu 579
雷沃4LZ-4G1
Lovol 4LZ-4G1
云南红河
Honghe,
Yunnan
粒收1号, 郑单958, 先玉1171, 渝单8号, 正红431, 中玉335, 靖单14, 靖单15, 新中玉801, 宣黄单17, 宝玉9号, 佛单7号, 华兴单88, 金粒1号, 金玉99, 靖单12,
靖丰18, 五谷3861, 先玉696, 雅玉69, 正大619
Lishou 1, Zhengdan 958, Xianyu 1171, Yudan 8, Zhenghong 431, Zhongyu 335, Jingdan 14, Jingdan 15, Xinzhongyu 801, Xuanhuangdan 17, Baoyu 9, Fodan 7, Huaxingdan 88, Jinli 1,
Jinyu 99, Jingdan 12, Jingfeng 18, Wugu 3861, Xianyu 696, Yayu 69, Zhengda 619
久保田4LZY-1.8B
Kubota 4LZY-1.8B

表2

不同收获时期试验品种信息(四川中江, 2018) "

类型
Type
品种个数
Number of varieties
品种
Cultivar
收获次数
Number of harvests
春玉米
Spring maize
4 正红6号, 仲玉3号, 先玉1171, 成单30
Zhenghong 6, Zhongyu 3, Xianyu 1171, Chengdan 30
6
夏玉米
Summer maize
15 正红431, 奥玉3111, 先玉1171, 正红505, 粒收1号, 正红6号, 中玉335, 延科288, 联创808, 丹玉336, 仲玉3号, 渝单8号, 渝单30, 荣玉1510, 郑单958
Zhenghong 431, Aoyu 3111, Xianyu 1171, Zhenghong 505, Lishou 1, Zhenghong 6, Zhongyu 335, Yanke 288, Lianchuang 808, Danyu 336, Zhongyu 3, Yudan 8, Yudan 30, Rongyu 1510, Zhengdan 958
2

图1

籽粒力学强度受力示意图"

图2

西南玉米机械粒收籽粒破碎率现状(2017-2018) "

图3

不同收获时期玉米籽粒破碎率、含水率、力学强度变化(2018) 箱型图中的箱体部分代表50% (25%~75%)样本的分布区域, 为四分位区间(IQR)。箱体内实线为中位线, “?”为异常值点, “+”为均值。图中不同小写字母表示不同时期在0.05水平下差异显著。"

图4

籽粒破碎率、含水率及力学强度间的关系(中江春玉米, 2018)"

表3

不同品种间的机械粒收破碎率差异(四川中江, 2018) "

分组编号
Group number
收获时间
Harvest time
(month
/day)
品种
Cultivar
籽粒类型
Grain type
收获机型
Harvester type
含水率
Moisture content (%)
籽粒力学强度
Grain mechanical strength (N)
破碎率
Broken rate (%)
立面Facade 侧面Side
1 7/31 先玉1171
Xianyu 1171
硬粒型
Flint corn
久保田4 LZY-1.8B 34.15 a 140.01 a 106.32 a 5.87 B
成单30
Chengdan 30
半马齿型
Semident corn
Kubota 4 LZY-1.8B 34.83 a 146.85 a 103.66 a 13.88 A
2 9/8 中玉335
Zhongyu 335
半马齿型
Semident corn
久保田4 LZY-1.8B 26.53 a 207.13 a 143.35 a 7.11 B
渝单30
Yudan 30
马齿型
Dent corn
Kubota 4 LZY-1.8B 26.49 a 181.40 a 130.16 a 4.26 B
荣玉1510
Rongyu 1510
半马齿型
Semident corn
26.48 a 188.12 a 132.90 a 13.25 A
3 9/16 荣玉1510
Rongyu 1510
半马齿型
Semident corn
久保田4 LZY-1.8B 23.86 a 182.44 a 102.14 a 8.21 a
郑单958
Zhengdan 958
半马齿型
Semident corn
Kubota 4 LZY-1.8B 23.84 a 186.14 a 114.58 a 4.13 c
渝单8号
Yudan 8
半马齿型
Semident corn
23.75 a 214.72 a 130.29 a 6.53 b
4 9/8 粒收1号
Lishou 1
马齿型
Dent corn
久保田4 LZY-1.8B 22.22 B 208.33 a 114.22 b 6.25 a
渝单8号
Yudan 8
半马齿型
Semident corn
Kubota 4 LZY-1.8B 28.30 A 206.91 a 128.21 a 6.85 a
5 9/8 正红431
Zhenghong 431
马齿型
Dent corn
久保田4 LZY-1.8B 30.33 A 172.69 a 104.79 a 11.60 a
先玉1171
Xianyu 1171
硬粒型
Flint corn
Kubota 4 LZY-1.8B 25.77 B 171.03a 104.41 a 12.63 a
渝单30
Yudan 30
马齿型
Dent corn
23.78 a 189.04 a 122.94 a 3.78 c
6 8/13 正红6号 Zhenghong 6 马齿型
Dent corn
久保田4 LZY-1.8B 23.03 a 190.92 a 146.94 a 2.62 b
9/8 正红6号 Zhenghong 6 马齿型
Dent corn
Kubota 4 LZY-1.8B 22.63 a 195.50 a 125.13 a 5.93 a
[1] 钟耕臣, 安艳玲 . 西南丘陵地区玉米机械化收获的现状及发展建议. 吉林农业, 2018,16:32-33.
Zhong G C, An Y L . Present situation and development suggestions of maize mechanized harvesting in southwest hilly areas. Agric Jilin, 2018,16:32-33 (in Chinese with English abstract).
[2] 李高科, 潘光堂 . 西南玉米区种质利用现状及研究进展. 玉米科学, 2005,13(2):3-7.
Li G K, Pan G T . The utilization present situation and study advances of the germplasm in southwest maize zone. J Maize Sci, 2005,13(2):3-7 (in Chinese with English abstract).
[3] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆 . 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017,50:2036-2043.
doi: 10.3864/j.issn.0578-1752.2017.11.009
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu Z W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K . Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017,50:2036-2043 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.009
[4] 《玉米科学》编辑部. 加强机械粒收研究推动玉米生产方式转型. 玉米科学, 2018,26(4):62.
Editorial Department of Journal of Maize Sciences. Strengthen the research of mechanical grain harvesting and promote the transformation of maize production mode. J Maize Sci, 2018,26(4):62 (in Chinese with English abstract).
[5] 李少昆 . 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报: 自然科学版, 2017,35:265-272.
Li S K . Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ (Nat Sci), 2017,35:265-272 (in Chinese with English abstract).
[6] 国家质量监督检验检疫总局和国家标准化委员会. 玉米收获机械: 技术条件. GB/T 21962-2008, 2008.
National Standard of People’s Republic of China. Technical Requirements for Maize Combine Harvester. GB/T 21962-2008, 2008 (in Chinese).
[7] 王克如, 李少昆 . 玉米机械粒收破碎率研究进展. 中国农业科学, 2017,50:2018-2026.
doi: 10.3864/j.issn.0578-1752.2017.11.007
Wang K R, Li S K . Progresses in research on grain broken rate by mechanical grain harvesting. Sci Agric Sin, 2017,50:2018-2026 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.007
[8] 张向前, 王瑞, 张瑞霞, 郭晓霞, 鉴军帅, 程玉臣, 吴慧, 孙峰成 . 内蒙古适宜籽粒机械化收获春玉米品种筛选. 北方农业学报, 2018,46(1):25-29.
Zhang X Q, Wang R, Zhang R X, Guo X X, Jian J S, Cheng Y C, Wu H, Sun F C . Screening varieties suitable for mechanical harvesting of spring maize kernel in Inner Mongolia. J Northern Agric, 2018,46(1):25-29 (in Chinese with English abstract).
[9] 薛军, 李璐璐, 张万旭, 王群, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆 . 玉米穗轴机械强度及其对机械粒收籽粒破碎率的影响. 中国农业科学, 2018,51:1868-1877.
doi: 10.3864/j.issn.0578-1752.2018.10.006
Xue J, Li L L, Zhang W X, Wang Q, Xie R Z, Wang K R, Ming B, Hou P, Li S K . Maize cob mechanical strength and its influence on kernel broken rate. Sci Agric Sin, 2018,51:1868-1877 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.10.006
[10] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50:2027-2035.
doi: 10.3864/j.issn.0578-1752.2017.11.008
Wang K R, Li S K . Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017,50:2027-2035 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.008
[11] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆 . 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017,50:2044-2051.
doi: 10.3864/j.issn.0578-1752.2017.11.010
Li L L, Lei X P, Xie R Z, Wang K R, Hou P, Zhang F L, Li S K . Analysis of influential factors on mechanical grain harvest quality of summer maize. Sci Agric Sin, 2017,50:2044-2051 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.010
[12] Ruan L, Wang J, Chen Y, Wang S, Zhang W, Zuo X, Chen H . Dry matter accumulation, moisture content in maize kernel and their influences on mechanical harvesting. Agric Sci Technol, 2011,12:1857-1860.
[13] 雷恩, 环建华, 王岳东, 杨永兵, 刘宝宏, 卢丙越, 刘艳红, 袁继超, 王璞 . 云南玉米宜机械收获性能和机收质量研究与评价. 农机化研究, 2018, (4):156-161.
Lei E, Huan J H, Wang Y D, Yang Y B, Liu B H, Lu B Y, Liu Y H, Yuan J C, Wang P . Research and evaluation of suitable for mechanized harvesting performance and mechanical harvesting quality for maize in the Yunnan area. J Agric Mech Res, 2018, (4):156-161 (in Chinese with English abstract).
[14] Filipenco A, Mandache V, Valsan G, Ivan F, Ciocazanu I . Inheritance of grain dry-down in corn (Zea mays L.). Bull UASMV Serie Agric, 2013,70:223-226.
[15] Johnson D Q, Russell W A . Genetic variability and relationships of physical grain-quality traits in the BSSS population of maize1. Crop Sci, 1982,22(4):805-809.
doi: 10.2135/cropsci1982.0011183X002200040025x
[16] Zhang L, Liang X G, Shen S, Yin H, Zhou L L, Gao Z, Lu X Y, Zhou S L . Increasing the abscisic acid level in maize grains induces precocious maturation by accelerating grain filling and dehydration. Plant Growth Regul, 2018,86(1):65-79.
doi: 10.1007/s10725-018-0411-7
[17] 李璐璐, 薛军, 谢瑞芝, 王克如, 明博, 侯鹏, 高尚, 李少昆 . 夏玉米籽粒含水率对机械粒收质量的影响. 作物学报, 2018,44:1747-1754.
doi: 10.3724/SP.J.1006.2018.01747
Li L L, Xue J, Xie R Z, Wang K R, Ming B, Hou P, Gao S, Li S K . Effects of grain moisture content on mechanical grain harvesting quality of summer maize. Acta Agron Sin, 2018,44:1747-1754 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01747
[18] 蔡超杰, 陈志, 韩增德, 刘贵明, 张宗玲, 郝俊发 . 种子玉米生物力学特性与脱粒性能的关系研究. 农机化研究, 2017, (4):192-196.
Cai C J, Chen Z, Han Z D, Liu G M, Zhang Z L, Hao J F . Study on relationship of biomechanical characteristics of corn seed and threshing performance. J Agric Mech Res, 2017, (4):192-196 (in Chinese with English abstract).
[19] 李心平, 马义东, 金鑫, 高连兴 . 玉米种子仿生脱粒机设计与试验. 农业机械学报, 2015,46(7):97-101.
Li X P, Ma Y D, Jin X, Gao L X . Design and test of corn seed bionic thresher. Trans CSAM, 2015,46(7):97-101 (in Chinese with English abstract).
[20] 玉米遗传育种学编写组. 玉米遗传育种学. 北京: 科学出报社, 1979
Writing Group of Maize Genetics and Breeding. Maize Genetics and Breeding. Beijing: Science Press, 1979 (in Chinese).
[21] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆 . 影响玉米机械收粒质量因素的分析. 作物杂志, 2013, (4):116-119.
Liu F H, Wang K R, Li J, Wang X M, Sun Y L, Chen Y S, Wang Y H, Han D S, Li S K . Factors affecting corn mechanically harvesting grain quality. Crops, 2013, (4):116-119 (in Chinese with English abstract).
[22] 国家质量监督检验检疫总局和国家标准化委员会. 玉米收获机械: 试验方法. GB/T 21961-2008, 2008.
People’s Republic of China National Standard. Technical Requirements for Maize Combine Harvester. GB/T 21961-2008, 2008 (in Chinese).
[23] 国家质量监督检验检疫总局和国家标准化委员会. 玉米.GB1353-2009, 2009.
People’s Republic of China National Standard. GB1353-2009, 2009 (in Chinese).
[24] Waelti H . Physical Properties and Morphological Characteristics of Maize and Their Influence on Threshing Injury of Kernels. PhD Dissertation of Iowa State University, Iowa, America, 1967.
[25] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆 . 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018,51:1878-1889.
doi: 10.3864/j.issn.0578-1752.2018.10.007
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K . Study on grain dehydration characters of summer maize and its relationship with grain filling. Sci Agric Sin, 2018,51:1878-1889 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.10.007
[26] Jennings M V . Genotypic Variability in Grain Quality of Corn Zea mays L. PhD Dissertation of Iowa State University, Iowa, America, 1974.
[27] Vyn T J, Moes J . Breakage susceptibility of corn kernels in relation to crop management under long growing season conditions. Agron J, 1988,80:915-920.
doi: 10.2134/agronj1988.00021962008000060015x
[28] Chowdhury M H, Buchele W F . Effects of the operating parameters of the rubber roller sheller. Trans ASABE, 1975,18:482-486.
doi: 10.13031/2013.36614
[29] Gunasekaran S, Paulsen M R . Breakage susceptibility of corn as a function of drying rates. Trans ASABE, 1985,28:2071-2076.
[30] Bauer P J, Carter P R . Effect of seeding date, plant density, moisture availability, and soil nitrogen fertility on maize kernel breakage susceptibility. Crop Sci, 1986,26:1220-1226.
doi: 10.2135/cropsci1986.0011183X002600060030x
[31] Plett S . Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Can J Plant Sci, 1994,74:543-544.
doi: 10.4141/cjps94-097
[32] 郭庆辰, 康浩冉, 王丽娥, 刘洪泉, 陈艳花, 白光红, 窦秉德 . 黄淮区籽粒机收玉米标准及育种模式探讨. 农业科技通讯, 2016, (1):159-162.
Guo Q C, Kang H R, Wang L E, Liu H Q, Chen Y H, Bai G H, Dou B D . The standard of corn grain mechanical harvest and breeding mode in Huang-Huai region. Bull Agric Sci Technol, 2016, (1):159-162 (in Chinese).
[33] 高连兴, 李飞, 张新伟, 张永丽, 刘新, 焦维鹏 . 含水率对种子玉米脱粒性能的影响机理. 农业机械学报, 2011,42(12):92-97.
Gao L X, Li F, Zhang X W, Zhang Y L, Liu X, Jiao W P . Mechanism of moisture content effect on corn seed threshing. Trans CSAM, 2011,42(12):92-97 (in Chinese with English abstract).
[34] 张永丽, 高连兴, 刘红力, 李心平 . 玉米籽粒剪切破碎的试验研究. 农机化研究, 2007, (5):136-138.
Zhang Y L, Gao L X, Liu H L, Li X P . Experimental study on corn kernel shear crash. J Agric Mech Res, 2007, (5):136-138 (in Chinese).
[35] Martin C R, Converse H H, Czuchajowska Z, Lai F S, Pomeranz Y . Breakage susceptibility and hardness of corn kernels of various sizes and shapes. Appl Eng Agric, 1987,3(1):104-113.
doi: 10.13031/2013.26655
[36] 李心平 . 种子玉米脱粒损伤机理及 5TYZ-1 型定向喂入式脱粒机研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2007.
Li X P . Study on Threshing Damage Mechanism of Seed Corn and Study on 5TYZ-1 Directional Feed Thresher. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2007 (in Chinese with English abstract).
[37] 袁月明, 栾玉振 . 玉米籽粒力学性质的试验研究. 吉林农业大学学报, 1996,18(4):75-78.
Yuan Y M, Luan Y Z . Experimental investigation of mechanical properties for corn kernels. J Jinlin Agric Univ, 1996,18(4):75-78 (in Chinese with English abstract).
[38] 李心平, 高连兴, 马福丽 . 玉米种子脱粒特性的试验研究. 农机化研究, 2007, (2):156-158.
Li X P, Gao L X, Ma F L . Experimental research of seed corn on the threshing property. J Agric Mech Res, 2007, (2):156-158 (in Chinese).
[1] 王克如, 李璐璐, 高尚, 王浥州, 黄兆福, 谢瑞芝, 明博, 侯鹏, 薛军, 张国强, 侯梁宇, 李少昆. 中国玉米机械粒收质量主要指标分析[J]. 作物学报, 2021, 47(12): 2440-2449.
[2] 李璐璐, 明博, 初振东, 张万旭, 高尚, 王浥州, 侯梁宇, 周先林, 谢瑞芝, 王克如, 侯鹏, 李少昆. 适宜机械粒收玉米品种的熟期评价指标[J]. 作物学报, 2021, 47(11): 2199-2207.
[3] 赵松超,李一凡,刘博远,赵铭钦. 晾制密度对雪茄烟叶膜脂过氧化作用及品质的影响[J]. 作物学报, 2019, 45(7): 1090-1098.
[4] 黄兆福,明博,王克如,谢瑞芝,杨飞,王志刚,肖春华,李少昆. 辽河流域玉米籽粒脱水特点及适宜收获期分析[J]. 作物学报, 2019, 45(6): 922-931.
[5] 樊廷录,王淑英,续创业,李尚中,王甲玺,王克如,赵刚,程万莉,张建军,王磊,党翼. 黄土高原旱作玉米籽粒水分与机械粒收质量的关系[J]. 作物学报, 2018, 44(9): 1411-1429.
[6] 李璐璐,明博,谢瑞芝,王克如,侯鹏,李少昆. 黄淮海夏玉米品种脱水类型与机械粒收时间的确立[J]. 作物学报, 2018, 44(12): 1764-1773.
[7] 薛军,王群,李璐璐,张万旭,谢瑞芝,王克如,明博,侯鹏,李少昆. 玉米生理成熟后倒伏变化及其影响因素[J]. 作物学报, 2018, 44(12): 1782-1792.
[8] 薛军,李璐璐,谢瑞芝,王克如,侯鹏,明博,张万旭,张国强,高尚,白氏杰,初振东,李少昆. 倒伏对玉米机械粒收田间损失和收获效率的影响[J]. 作物学报, 2018, 44(12): 1774-1781.
[9] 李璐璐,薛军,谢瑞芝,王克如,明博,侯鹏,高尚,李少昆. 夏玉米籽粒含水率对机械粒收质量的影响[J]. 作物学报, 2018, 44(12): 1747-1754.
[10] 高尚,明博,李璐璐,谢瑞芝,薛军,侯鹏,王克如,李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系[J]. 作物学报, 2018, 44(12): 1755-1763.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!