作物学报 ›› 2020, Vol. 46 ›› Issue (8): 1195-1207.doi: 10.3724/SP.J.1006.2020.94163
黄小芳1,2,毕楚韵1,2,石媛媛2,胡韵卓3,周丽香4,梁才晓4,黄碧芳4,许明1,2,林世强1,4,*(),陈选阳1,2,5,*()
HUANG Xiao-Fang1,2,BI Chu-Yun1,2,SHI Yuan-Yuan2,HU Yun-Zhuo3,ZHOU Li-Xiang4,LIANG Cai-Xiao4,HUANG Bi-Fang4,XU Ming1,2,LIN Shi-Qiang1,4,*(),CHEN Xuan-Yang1,2,5,*()
摘要:
NBS-LRR类基因家族是植物抗病R基因(Resistance gene)数量最多的一类, 具有NBS (Nucleotide-binding site)和LRR (Leucine-leucine-repeat)结构域。甘薯(Ipomoea batatas)栽培种基因组已完成测序, 但尚未注释, 本研究对甘薯基因组序列进行外显子预测, 得到甘薯染色体组全基因组蛋白序列, 在此基础上进一步对NBS-LRR家族基因鉴定和分析表明, 甘薯基因组中含有379个NBS-LRR家族基因, 占全基因组基因总数的0.212%, 其中N型亚家族120个, NL型103个, CNL型133个, TNL型22个, PN型1个。所有染色体上均有NBS-LRR家族基因分布, 但数量明显不同, 其中有60.9%的NBS-LRR基因序列呈簇状分布。NBS-LRR基因序列有15个保守结构域, 在N端较为保守。研究结果为甘薯进一步开展NBS-LRR家族基因的功能研究和抗性育种提供了参考。
[1] |
Staskawicz B J, Ausubel F M, Baker B J, Ellis J G, Jones J D. Molecular genetics of plant disease resistance. Science, 1995,268:661-667.
doi: 10.1126/science.7732374 pmid: 7732374 |
[2] | 李楠洋. 棉花抗黄萎病基因筛选及NBS-LRR类抗病基因GbaNA1功能研究. 中国农业科学院博士学位论文, 北京, 2017. |
Li N Y. Screening of Cotton Anti Verticillium Wilt Genes and Functional Study on NBS-LRR Resistance Gene GbaNA1. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract). | |
[3] |
Changkwian A, Venkatesh J, Lee J H, Han J W, Kwon J K, Siddique M I, Solomon A M, Choi G J, Kim E, Seo Y, Kim Y H, Kang B C. Physical localization of the root-knot nematode (Meloidogyne incognita) resistance locus Me7 in pepper(Capsicum annuum). Front Plant Sci, 2019,10:886.
doi: 10.3389/fpls.2019.00886 pmid: 31354762 |
[4] | 房卫平, 谢德意, 李志芳, 李武, 赵付安, 孙瑶, 段峥峥, 杨晓杰. NBS-LRR类抗病蛋白介导的植物抗病应答分子机制. 分子植物育种, 2015,13:469-474. |
Fang W P, Xie D Y, Li Z F, Li W, Zhao F A, Sun Y, Duan Z Z, Yang X J. Molecular mechanism on NBS-LRR proteins-mediated plant disease response. Mol Plant Breed, 2015, 13:469-474 (in Chinese with English abstract). | |
[5] |
Jones J D G, Dangl J L. The plant immune system. Nature, 2006,444:323-329.
doi: 10.1038/nature05286 pmid: 17108957 |
[6] |
Hammond-Kosack K E, Parker J E. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol, 2003,14:177-193.
doi: 10.1016/s0958-1669(03)00035-1 pmid: 12732319 |
[7] | 尹玲, 方辉, 黄羽, 卢江, 曲俊杰. 植物TIR-NB-LRR类型抗病基因各结构域的研究进展. 广西植物, 2017,37:186-190. |
Yin L, Fang H, Huang Y, Lu J, Qu J J. Research progress on domains of plant TIR-NB-LRR resistance genes. Guihaia, 2017,37:186-190 (in Chinese with English abstract). | |
[8] | 陆建珍, 汪翔, 秦建军, 戴起伟, 易中懿. 我国甘薯种植业发展状况调查报告(2017年)——基于国家甘薯产业技术体系产业经济固定观察点数据的分析. 江苏农业科学, 2018,46(23):393-398. |
Lu J Z, Wang X, Qin J J, Dai Q W, Yi Z Y. Investigation report on the development of sweet potato cultivation in China (2017): Analysis based on the data of industrial economy fixed observation point of the national sweet potato industry technology system. Jiangsu Agric Sci, 2018,46(23):393-398 (in Chinese with English abstract). | |
[9] | 赵永强, 张成玲, 孙厚俊, 徐振, 陈晓宇, 谢逸萍. 甘薯病毒病复合体(SPVD)对甘薯产量的影响. 西南农业学报, 2012,25:909-911. |
Zhao Y Q, Zhang C L, Sun H J, Xu Z, Chen X Y, Xie Y P. Effects of viruses (SPVD) on yield of sweet potato. Southwest China J Agric Sci, 2012,25:909-911 (in Chinese with English abstract). | |
[10] | 赵冬兰, 唐君, 张安, 周志林, 曹清河, 戴习彬. 甘薯病毒病对不同基因型甘薯产量和品质的影响. 江西农业学报, 2018,30(11):62-65. |
Zhao D L, Tang J, Zhang A, Zhou Z L, Cao Q H, Dai X B. Effects of virus diseases on yield and quality of different sweet potato genotypes. Acta Agric Jiangxi, 2018,30(11):62-65 (in Chinese with English abstract). | |
[11] | 屈满义, 查向东, 王钰, 杨金环, 蒋琳, 阮龙. 甘薯NBS-LRR类抗病基因同源序列的克隆、分析及数目研究. 热带作物学报, 2008,29:610-617. |
Qu M Y, Zha X D, Wang Y, Yang J H, Jiang L, Ruan L. Study on cloning, analysis and number of NBS-LRR resistance genes of sweet potato. Chin J Trop Crops, 2008,29:610-617 (in Chinese with English abstract). | |
[12] |
Yang J, Moeinzadeh M H, Kuhl H, Helmuth J, Xiao P, Haas S, Liu G, Zheng J, Sun Z, Fan W, Deng G, Wang H, Hu F, Zhao S, Fernie A R, Boerno S, Timmermann B, Zhang P, Vingron M. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants, 2017,3:696-703.
doi: 10.1038/s41477-017-0002-z pmid: 28827752 |
[13] |
Ian K. Gene finding in novel genomes. BMC Bioinformatics, 2004,5:59.
pmid: 15144565 |
[14] | Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer E L, Tate J, Punta M. Pfam: the protein families database. Nucleic Acids Res, 2014,42:222-230. |
[15] | Madeira F, Park Y M, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey A R N, Potter S C, Finn R D, Lopez R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res, 2019,47:636-641. |
[16] |
Eddy S R. Profile Hidden Markov Models. Bioinformatics, 1998,14:755-763.
pmid: 9918945 |
[17] | Pottter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. Web server issue. Nucleic Acids Res, 2018,46:200-204. |
[18] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing, Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics, 2009,25:2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943 |
[19] |
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011,27:2987-2993.
doi: 10.1093/bioinformatics/btr509 pmid: 21903627 |
[20] |
Brendolise C, Montefiori M, Dinis R, Peeters N, Storey R D, Rikkerink E H. A novel hairpin library-based approach to identify NBS-LRR genes required for effector-triggered hypersensitive response in Nicotiana benthamiana. Plant Methods, 2017,13:32.
doi: 10.1186/s13007-017-0181-7 pmid: 28465712 |
[21] |
Sievers F, Wilm A, Dineen D, Gibson T J, Karplus K, Li W Z, Lopez R, McWilliam H, Remmert M, Söding J, Thompson J D, Higgins D G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol, 2011,7:539.
doi: 10.1038/msb.2011.75 pmid: 21988835 |
[22] | Marchler-Bauer A, Bryant S H. CD-search: protein domain annotations on the fly. Nucleic Acids Res, 2004,32:327-331. |
[23] |
Marchler-Bauer A, Lu S N, Anderson J B, Chitsaz F, Derbyshire M K, De Weese-Scott C, Fong J H, Geer L Y, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Jackson J D, Ke Z, Lanczycki C J, Lu F, Marchler G H, Mullokandov M, Omelchenko M V, Robertson C L, Song J S, Thanki N, Yamashita R A, Zhang D C, Zhang N G, Zheng C J, Bryant S H. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res, 2011,39:225-229.
doi: 10.1093/nar/gkq769 pmid: 20823090 |
[24] | Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S N, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Marchler G H, Song J S, Thanki N, Wang Z X, Yamashita R A, Zhang D C, Zheng C J, Bryant S H. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2015,43:222-226. |
[25] | Marchler-Bauer A, Bo Y, Han L Y, He J N, Lanczycki C J, Lu S N, Chitsaz F, Derbyshire M K, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Lu F, Marchler G H, Song J S, Thanki N, Wang Z X, Yamashita R A, Zhang D C, Zheng C J, Geer L Y, Bryant S H. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res, 2017,45:200-203. |
[26] | Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. InterProScan: protein domains identifier. Nucleic Acids Res, 2005,33:116-120. |
[27] |
Barragan C A, Wu R, Kim S T, Xi W Y, Habring A, Hagmann J, Van de Weyer A L, Zaidem M, Ho W W H, Wang G, Bezrukov I, Weigel D, Chae E. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genet, 2019,15:e1008313.
doi: 10.1371/journal.pgen.1008313 pmid: 31344025 |
[28] | 刘云飞, 万红建, 李志邈, 叶青静, 王荣青, 阮美颖, 姚祝平, 周国治, 韦艳萍, 杨悦俭. 植物NBS-LRR抗病基因的结构、功能、进化起源及其应用. 分子植物育种, 2014,12:377-389. |
Liu Y F, Wan H J, Li Z M, Ye Q J, Wang R Q, Ruan M Y, Yao Z P, Zhou G Z, Wei Y P, Yang Y J. The structure, function, evolutional origin and application of plant NBS-LRR resistance genes. Mol Plant Breed, 2014,12:377-389 (in Chinese with English abstract). | |
[29] |
Lupas A, Dyke M V, Stock J, Predicting coiled coils from protein sequences. Science, 1991,252:1162-1164.
doi: 10.1126/science.252.5009.1162 pmid: 2031185 |
[30] |
McDonnell A V, Jiang T, Keating A E, Berger B. Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics, 2006,22:356-358.
pmid: 16317077 |
[31] |
Jupe F, Pritchard L, Etherington G J, MacKenzie K, Cock P J, Wright F, Sharma S K, Bolser D, Bryan G J, Jones J D, Hein I. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics, 2012,13:75.
pmid: 22336098 |
[32] | 蒋卉, 张晶, 符真珠, 董晓宇, 王慧娟, 李艳敏, 高杰, 王利民, 张和臣. 蝴蝶兰NBS-LRR家族基因挖掘和生物信息学分析. 分子植物育种, 2018,16:2786-2794. |
Jiang H, Zhang J, Fu Z Z, Dong X Y, Wang H J, Li Y M, Gao J, Wang L M, Zhang H C. Mining and bioinformatics analysis of NBS-LRR gene family in phalaenopsis. Mol Plant Breed, 2018,16:2786-2794 (in Chinese with English abstract). | |
[33] | Bailey T L, Williams N, Misleh C, Li W W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res, 2006,34:369-373. |
[34] |
Chen C J, Chen H, He Y H, Xia R. TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv, 2018. doi: https://doi.org/10.1101/289660.
doi: 10.1101/2020.06.27.175430 pmid: 32637963 |
[35] |
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol, 2000,17:540-552.
doi: 10.1093/oxfordjournals.molbev.a026334 pmid: 10742046 |
[36] |
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol, 2007,56:564-577.
doi: 10.1080/10635150701472164 pmid: 17654362 |
[37] |
Waterhouse A M, Procter J B, Martin D M A, Clamp M, Barton G J. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics, 2009,25:1189-1191.
doi: 10.1093/bioinformatics/btp033 pmid: 19151095 |
[38] |
Troshin P V, Procter J B, Barton G J. Java bioinformatics analysis web services for multiple sequence alignment—JABAWS: MSA. Bioinformatics, 2011,27:2001-2002.
doi: 10.1093/bioinformatics/btr304 pmid: 21593132 |
[39] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018,35:1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
[40] |
Hao W, Collier S M, Moffett P, Chai J. Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2). J Biol Chem, 2013,288:35868-35876.
doi: 10.1074/jbc.M113.517417 pmid: 24194517 |
[41] |
Tarr D E, Alexander H M. TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Res Notes, 2009,2:197.
doi: 10.1186/1756-0500-2-197 pmid: 19785756 |
[42] |
Lozano R, Hamblin M T, Prochnik S, Jannink J L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genomics, 2015,16:360.
doi: 10.1186/s12864-015-1554-9 pmid: 25948536 |
[43] |
Zhou T, Wang Y, Chen J Q, Araki H, Jing Z, Jiang K, Shen J, Tian D. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics, 2004,271:402-415.
doi: 10.1007/s00438-004-0990-z pmid: 15014983 |
[44] |
Meyers B C, Kozik A, Griego A, Kuang H, Michelmore R W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 2003,15:809-834.
doi: 10.1105/tpc.009308 pmid: 12671079 |
[45] | 刘小芳, 袁欣, 聂迎彬, 张晶. 乌拉尔图小麦NBS-LRR家族生物信息学分析. 分子植物育种, 2018,16:7587-7597. |
Liu X F, Yuan X, Nie Y B, Zhang J. Bioinformatics Analysis of NBS-LRR gene family in Triticum urartu. Mol Plant Breed, 2018,16:7587-7597 (in Chinese with English abstract). | |
[46] | 王岩, 李兆阳, 唐心龙, 卢姗, 许鹏, 张静, 方奎, 席景会. 拟南芥基因组NBS-LRR类基因家族的生物信息学分析. 中国农学通报, 2009,25(15):40-45. |
Wang Y, Li Z Y, Tang X L, Lu S, Xu P, Zhang J, Fang K, Xi J H. Bioinformatic analysis of the NBS-LRR gene family in Arabidopsis thaliana. Chin Agric Sci Bull, 2009,25(15):40-45 (in Chinese with English abstract). | |
[47] |
Holub E B. The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet, 2001,2:516-527.
doi: 10.1038/35080508 pmid: 11433358 |
[48] |
Liu Z C, Xie J M, Wang H P, Zhong X H, Li H L, Yu J H, Kang J G. Identification and expression profiling analysis of NBS-LRR genes involved in Fusarium oxysporum f. sp. conglutinans resistance in cabbage. 3 Biotech, 2019,9:202.
doi: 10.1007/s13205-019-1714-8 pmid: 31065502 |
[49] |
Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers B C, Boerjan W, Martin F. Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol, 2008,66:619-636.
doi: 10.1007/s11103-008-9293-9 pmid: 18247136 |
[50] |
Ahlenstiel G, Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G. Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja. PLoS One, 2012,7:e34775.
doi: 10.1371/journal.pone.0034775 pmid: 22493716 |
[51] |
Li T G, Wang B L, Yin C M, Zhang D D, Wang D, Song J, Zhou L, Kong Z Q, Klosterman S J, Li J J, Adamu S, Liu T L, Subbarao K V, Chen J Y, Dai X F. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against verticillium wilt. Mol Plant Pathol, 2019,20:857-876.
doi: 10.1111/mpp.12797 pmid: 30957942 |
[52] |
Meyers B C, Morgante M, Michelmore R W. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J, 2002,32:77-92.
doi: 10.1046/j.1365-313x.2002.01404.x pmid: 12366802 |
[53] |
Wu L, Hickson I D. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature, 2003,426:870-874.
doi: 10.1038/nature02253 pmid: 14685245 |
[54] |
Lakatos L, Csorba T, Pantaleo V, Chapman E J, Carrington J C, Liu Y P, Dolja V V, Calvino L F, López-Moya J J, Burgyán J. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J, 2006,25:2768-2780.
doi: 10.1038/sj.emboj.7601164 pmid: 16724105 |
[55] |
López C E, Zuluaga A P, Cooke R, Delseny M, Tohme J, Verdie V. Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster in cassava. Mol Genet Genomics, 2003,269:658-671.
doi: 10.1007/s00438-003-0868-5 pmid: 12827500 |
[56] |
Wu S, Lau K H, Cao Q H, Hamilton J P, Sun H H, Zhou C X, Eserman L A, Gemenet D C, Olukolu B A, Wang H Y, Crisovan E, Godden G T, Jiao C, Wang X, Kitavi M, anrique-Carpintero N, Vaillancourt B, Wiegert-Rininger K, Yang X S, Bao K, Schaff J, Wolfgang J K, Gruneberg A K, Ghislain M, Ma D, Jiang J M, Mwanga R O M, Leebens-Mack J, Lachlan J M, Coin G, Yencho G C, Buell C R, Fei Z J. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat Commun, 2018,9:4580.
pmid: 30389915 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[3] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[4] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
[5] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[6] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[7] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[8] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[9] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[10] | 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459. |
[11] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[12] | 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893. |
[13] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
[14] | 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319. |
[15] | 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162. |
|