欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (9): 1303-1311.doi: 10.3724/SP.J.1006.2020.03004

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

玉米拟轮枝镰孢菌穗腐病抗性基因的挖掘

闻竞1, 沈彦岐1, 韩四平1, 邢跃先2, 张叶1, 王梓钰1, 李世界1, 杨小红3, 郝东云1, 张艳1,*()   

  1. 1 吉林省农业科学院农业生物技术研究所,吉林长春 130033
    2 吉林省农业科学院玉米研究所,吉林公主岭 136100
    3 中国农业大学农学院,北京 100193
  • 收稿日期:2020-01-18 接受日期:2020-04-15 出版日期:2020-09-12 网络出版日期:2020-04-26
  • 通讯作者: 张艳
  • 基金资助:
    本研究由国家自然科学基金项目资助(31701504)

Exploration of specific gene(s) for ear rot resistance to Fusarium verticilloides in maize

WEN Jing1, SHEN Yan-Qi1, HAN Si-Ping1, XING Yue-Xian2, ZHANG Ye1, WANG Zi-Yu1, LI Shi-Jie1, YANG Xiao-Hong3, HAO Dong-Yun1, ZHANG Yan1,*()   

  1. 1 Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
    2 Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin, China
    3 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2020-01-18 Accepted:2020-04-15 Published:2020-09-12 Published online:2020-04-26
  • Contact: Yan ZHANG
  • Supported by:
    National Natural Science Foundation of China(31701504)

摘要:

玉米穗腐病是一种严重危害玉米生产的真菌性病害, 而目前在世界范围内玉米育种上应用的大多数自交系缺少对穗腐病的抗性。玉米穗腐病抗性位点的挖掘和抗病基因的克隆, 对玉米穗腐病的遗传改良至关重要。本研究旨在通过转录组测序和全基因组关联分析的方法进行玉米拟轮枝镰孢菌穗腐病抗性位点的挖掘并初步确定候选基因。抗病自交系法A和感病自交系掖81162的转录组测序结果表明, 人工接种拟轮枝镰孢菌后7 d两个自交系的差异表达基因有10,761个。通过全基因组关联分析共检测到5个与穗腐病抗性显著相关的SNP, 这些SNP分布在1号和9号染色体上。通过比对B73 RefGen_v3并注释, 发现SNP位点附近涉及的基因包括酰基激活酶1过氧化物酶体、蛋白磷酸酶2C 48、镁转运蛋白、受体蛋白激酶CRINKLY4和锌指CCCH域蛋白19。将在转录组测序中获得差异表达基因和全基因组选择中关联到的基因进行比对, 发现全基因组关联分析中关联到的锌指CCCH域蛋白19同时也是转录组测序中获得的差异表达基因, 表明锌指CCCH域蛋白19可能与玉米拟轮枝镰孢菌穗腐病的抗性相关。本研究结果不仅能为抗病基因的克隆和玉米的抗病分子育种提供一定的理论依据和重要的遗传资源, 而且能为玉米和病原菌的相互作用机理的解析奠定基础。

关键词: 玉米, 拟轮枝镰孢菌, 穗腐病, 抗性基因

Abstract:

Ear rot in maize, caused by fungal pathogens, poses a grave threat to maize production, and current inbred lines in use generally lack resistance to ear rot. It is essential to explore the resistant loci and corresponding resistance genes for improvement of the resistance to ear rot in maize by molecular marker-assisted breeding and biotechnology breeding. The purpose of this study was to explore the resistance loci of ear rot caused by Fusarium verticilloides and preliminary identify candidate genes by transcriptome analysis and genome-wide association. The result of transcriptome analysis showed that there were 10,761 differentially expressed genes between inbred lines Fa A and Ye 81162 at seven days after artificial inoculation with Fusarium verticilloides. A total of five SNPs significantly associated with ear rot resistance were detected by genome-wide association analysis, and these SNPs were distributed on chromosomes 1 and 9. By comparing B73 RefGen_v3 and annotating, it was found that the genes involved near the SNP site included acyl activating enzyme 1 peroxisome, protein phosphatase 2C 48, magnesium transporter, receptor protein kinase CRINKLY4 and zinc finger CCCH domain protein 19. The zinc finger CCCH domain protein 19 detected in genome-wide association just was the differentially expressed gene from transcriptome analysis, indicating that Zinc finger CCCH domain protein 19 probably is related to resistance to Fusarium verticilloides ear rot in maize. The results not only provide theoretical basis and important genetic resources for resistance gene cloning and molecular breeding of maize, but also lay a foundation for analysing the interaction between maize and pathogen.

Key words: maize, Fusarium verticilloides, ear rot, resistance genes

表1

玉米穗腐病病情分级标准"

病情评级Disease severity 发病百分比Percentage of symptom
1 发病面积占雌穗总面积0~1% Percentages of lesion area: 0-1%
3 发病面积占雌穗总面积2%~10% Percentages of lesion area: 2%-10%
5 发病面积占雌穗总面积11%~25% Percentages of lesion area: 11%-25%
7 发病面积占雌穗总面积26%~50% Percentages of lesion area: 26%-50%
9 发病面积占雌穗总面积51%~100% Percentages of lesion area: 51%-100%

表2

引物序列"

基因名称
Gene name
上游引物序列
Forward primer sequence (5'-3')
下游引物序列
Reverse primer sequence (5'-3')
产物长度
Product length (bp)
actin CCTTCATTGGCATGGAATCT GCAACCACCTTCACCTTCAT 128
β-tubulin2 AGACCGGTCAGTGCGGTAAC CGTGCTCGCCAGAGAGATGGT 70
CCCH domain protein 19 CAGGTGAGTTGTGGACATGG CTCCAAGCACAAGCAAACAA 197

图1

掖81162样品中β-tubulin2基因的RT-PCR分析 M: DL2000 marker; 1~6: 接菌前和接菌后1 d、2 d、3 d、4 d、7 d的玉米籽粒样品。"

图2

人工接种拟轮枝镰孢菌后β-tubulin2基因的相对表达量"

图3

人工接种拟轮枝镰孢菌后法A和掖81162的差异表达基因分析 R: 抗病; S: 感病; R-0: 接菌前的法A; R-7d: 接菌后7 d的法A; S-0: 接菌前的掖81162; S-7d: 接菌后7 d的掖81162。"

图4

玉米拟轮枝镰孢菌穗腐病抗性全基因组关联分析的Manhattan图和QQ-plot图"

表3

人工接种拟轮枝镰孢菌后β-tubulin2基因的相对表达量"

自交系
Inbred line
β-tubulin2基因的相对表达量 Relative expression of β-tubulin2 gene
接菌前
Before inoculation
1 d 2 d 3 d 4 d 7 d
法A Fa A 0±0.00 0.0004±0.00 0.0002±0.00 0.0003±0.00 0.0002±0.00 1.006E-07±0.00
掖81162 Ye 81162 0±0.00 2.3894±0.93 0.6537±0.14 3.1675±0.38 3.0244±0.65 4.2477±0.26

表4

拟轮枝镰孢菌穗腐病抗性的相关SNP位点涉及的基因信息"

标记
Marker
注释
Annotation
染色体
Chromosome
描述
Description
chr1.S_7569254 GRMZM2G110616 1 酰基激活酶1过氧化物酶体
Probable acyl-activating enzyme 1 peroxisomal
chr1.S_8288770 GRMZM5G891266 1 蛋白磷酸酶2C 48 Probable protein phosphatase 2C 48
chr1.S_8353697 GRMZM2G018706 1 镁转运蛋白10 Magnesium transporter 10
chr9.S_154383692 GRMZM2G092776 9 受体蛋白激酶CRINKLY4 Receptor protein kinase CRINKLY4
chr9.S_154384544 GRMZM2G393471 9 锌指CCCH域蛋白19 Zinc finger CCCH domain-containing protein 19

图5

人工接种拟轮枝镰孢菌后锌指CCCH域蛋白19基因的相对表达量"

[1] Ullstrup A J. An undescribed ear rot of corn caused by Physalospora zeae. Phytopathology, 1946,36:201-212.
[2] Bezuidenhout H, Maxasas W F O. Botryosphaeria zeae: the cause of gery ear rot of maize(Zea mays) in South Africa. Phytophylaetica, 1978,10:21-24.
[3] Kumar V, Shetty H S. A new ear and kernel rot of maize caused by Trichoderma viride pers. ex Fries. Curr Sci, 1982,51:620-621.
[4] 张艳, 谭静. 玉米穗粒腐病的研究进展. 现代农业科技, 2014, (21):121-122.
Zhang Y, Tan J. Research progress on ear rot in maize. Modern Agric Sci Technol, 2014, (21):121-122 (in Chinese with English abstract).
[5] 潘惠康, 张兰新. 玉米对穗粒腐病菌的抗病性. 华北农学报, 1987,2(3):86-89.
Pan H K, Zhang L X. Studies on kernel and ear rot of corm. Acta Agric Boreali-Sin, 1987,2(3):86-89 (in Chinese with English abstract).
[6] 任金平. 玉米穗腐病研究进展. 吉林农业科学, 1993, (3):39-43.
Ren J P. Progress in researching of ear rot of maize. J Jilin Agric Sci, 1993, (3):39-43 (in Chinese with English abstract).
[7] 胡南, 章红. 吉林省玉米穗腐病病原真菌中镰刀菌毒素的研究. 玉米科学, 1997,5(2):66-68.
Hu N, Zhang H. A study on production of three Fusarium mycotoxins of corn ear rot pathogenic fungi in Jilin province. J Maize Sci, 1997,5(2):66-68 (in Chinese with English abstract).
[8] 胡韬纲. 玉米穗腐病研究进展. 粮食科技与经济, 2015,40(3):50-52.
Hu T G. Research progress on maize ear rot. Grain Sci Technol Econ, 2015,40(3):50-52 (in Chinese with English abstract).
[9] 陈甲法, 丁俊强, 孙小东, 王爱东, 刘春元, 王瑞霞, 李晶晶, 王永霞, 马金亮, 韩娅楠, 吴建宇. 几种杀菌剂对玉米穗粒腐病主要病原菌的抑制作用. 河南农业科学, 2009, (4):81-83.
doi: 10.3969/j.issn.1004-3268.2009.04.022
Chen J F, Ding J Q, Sun X D, Wang A D, Liu C Y, Wang R X, Li J J, Wang Y X, Ma J L, Han Y N, Wu J Y. Inhibitory effects of several fungicides on the main pathogens of corn ear rot. J Henan Agric Sci, 2009, (4):81-83 (in Chinese).
[10] 刘春元, 李洪连, 吴建宇, 刘建华. 穗粒腐病菌对玉米幼苗的致病性研究. 河南农业科学, 2005, (11):60-63.
doi: 10.3969/j.issn.1004-3268.2005.11.019
Liu C Y, Li H L, Wu J Y, Liu J H. Studies on pathogenicity of pathogen of ear and seed rot in maize hybrids to maize seedling blight. J Henan Agric Sci, 2005, (11):60-63 (in Chinese with English abstract).
[11] 陈广泉. 河西走廊玉米穗粒腐病侵染规律及发病因子研究. 玉米科学, 2006,14(1):158-160.
Chen G Q. Study on infection law and disease factor of corn spike kernel rotten in Hexi corridor. J Maize Sci, 2006,14(1):158-160 (in Chinese with English abstract).
[12] 袁广胜, 杜娟, 高健, 张志明, 潘光堂. 玉米穗粒腐病差异表达基因的生物信息学分析. 玉米科学, 2013,21(5):46-51.
Yuan G S, Du J, Gao J, Zhang Z M, Pan G T. Bioinformation analysis on the differentially expressed genes in maize ear rot. J Maize Sci, 2013,21(5):46-51 (in Chinese with English abstract).
[13] Young N D. QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol, 1996,34:479-501.
doi: 10.1146/annurev.phyto.34.1.479 pmid: 15012553
[14] Ding J Q, Wang X M, Chander S, Yan J B, Li J S. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed, 2008,22:395-403.
doi: 10.1007/s11032-008-9184-4
[15] Li Z M, Ding J Q, Wang R X, Chen J F, Sun X D, Chen W, Song W B, Dong H F, Dai X D, Xia Z L, Wu J Y. A new QTL for resistance to Fusarium ear rot in maize. J Appl Genet, 2011,52:403-406.
[16] Zila C T, Ogut F, Romay M C, Gardner C A, Buckler E S, Holland J B. Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. BMC Plant Biol, 2014,14:372.
doi: 10.1186/s12870-014-0372-6 pmid: 25547028
[17] Zila C T, Samayoa L F, Santiago R, Butron A, Holland J B. A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. Genes Genomes Genet, 2013,3:2095-2104.
[18] Kebede A Z, Woldemariam T, Reid L M, Harris L J. Quantitative trait loci mapping for Gibberella ear rot resistance and associated agronomic traits using genotyping-by-sequencing in maize. Theor Appl Genet, 2016,129:17-29.
doi: 10.1007/s00122-015-2600-3 pmid: 26643764
[19] Chen J F, Ding J Q, Li H M, Li Z M, Sun X D, Li J J, Wang R X, Dai X D, Dong H F, Song W B, Chen W, Xia Z L, Wu J Y. Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed, 2012,30:1649-1656.
[20] Perez-Brito S J D G D. QTL Mapping of Fusarium moniliforme ear rot resistance in highland maize, Mexico. Publicado como Articuloen Agrociencia, 2001,35:181-196.
[21] 张艳, 张叶, 王梓钰, 闻竞, 韩四平, 郭嘉, 邢跃先. 44份玉米自交系对镰孢穗腐病的抗性鉴定. 植物遗传资源学报, 2019,20:276-283
Zhang Y, Zhang Y, Wang Z Y, Wen J, Han S P, Guo J, Xing Y X. Evaluation of resistance to Fusarium ear rot in 44 maize inbred lines. J Plant Genet Resour, 2019,20:276-283 (in Chinese with English abstract).
[22] 邹成佳, 崔丽娜, 章振羽, 张小飞, 李荣进, 陈耕, 李晓. 玉米自交系对轮枝镰孢菌穗腐病的抗性评价, 西南农学报, 2017,30:1346-1349
Zou C J, Cui L N, Zhang Z Y, Zhang X F, Li R J, Chen G, Li X. Evaluation of maize inbred lines for resistance to Fusarium verticillioides ear rot. Southwest China J Agric Sci, 2017,30:1346-1349 (in Chinese with English abstract).
[23] 刘小艳, 孙艳侠, 王亚男, 刘晓楠, 刘坤, 郗冬梅. 水稻CCCH锌指蛋白亚家族I基因的表达分析. 山东农业科学, 2015,47(2):7-11
Liu X Y, Sun Y X, Wang Y N, Liu X N, Liu K, Xi D M. Expression analysis of CCCH-zinc finger protein subfamily I genes in rice. Shandong Agric Sci, 2015,47(2):7-11 (in Chinese with English abstract).
[24] 秦智慧, 杨青川, 晁跃辉, 康俊梅. CCCH型锌指蛋白研究进展. 生物技术通报, 2010, (8):1-6.
Qin Z H, Yang Q C, Chao Y H, Kang J M. Study of CCCH-type zinc finger protein. Biotechnol Bull, 2010, (8):1-6 (in Chinese with English abstract).
[25] Synan A Q, Chen X, Rahul D, Burton B, John S, Stephen L, Robert A, Tesfaye M. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J, 2006,48:28-44.
pmid: 16925600
[26] Sun J Q, Jiang H L, Xu Y X, Li H M, Wu X Y, Xie Q, Li C Y. The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol, 2007,48:1148-1158.
doi: 10.1093/pcp/pcm088 pmid: 17609218
[27] Yao L S, Li Y M, Ma C Y, Tong L X, Du F L, Xu M L. Combined genome-wide association study and rtanscriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J Integr Plant Biol, published online, doi: 10.1111/ jipb.12911
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!