欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (9): 1332-1339.doi: 10.3724/SP.J.1006.2020.02013

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻白叶枯病感病相关基因Xig1的分子鉴定及抗病资源创制

郑凯丽1(), 纪志远1(), 郝巍1, 唐永超1, 韦叶娜1,2, 胡运高2, 赵开军1, 王春连1,*()   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京 100081
    2 西南科技大学水稻研究所, 四川绵阳621010
  • 收稿日期:2020-02-27 接受日期:2020-04-15 出版日期:2020-09-12 网络出版日期:2020-05-07
  • 通讯作者: 王春连
  • 作者简介:郑凯丽, E-mail: zhkl111007@163.com|纪志远, E-mail: jizhiyuan@caas.cn
  • 基金资助:
    本研究由国家自然科学基金项目(31571640);中国科协青年人才托举工程资助(2017QNRC001)

Molecular identification of rice bacterial blight susceptible gene Xig1 and creation of disease resistant resources

ZHENG Kai-Li1(), JI Zhi-Yuan1(), HAO Wei1, TANG Yong-Chao1, WEI Ye-Na1,2, HU Yun-Gao2, ZHAO Kai-Jun1, WANG Chun-Lian1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
    2 Rice Research Institute, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
  • Received:2020-02-27 Accepted:2020-04-15 Published:2020-09-12 Published online:2020-05-07
  • Contact: Chun-Lian WANG
  • Supported by:
    National Natural Science Foundation of China(31571640);Young Elite Scientist Sponsorship of China Association for Science and Technology(2017QNRC001)

摘要:

水稻白叶枯病相关基因Xig1在感病亲本IR24中受白叶枯病菌的诱导表达。本研究通过克隆与比较Xig1的序列后发现, 抗病野生稻导入系W6023与感病亲本IR24中Xig1等位基因的差异主要集中在启动子区。水稻原生质体观察XIG1在细胞中的定位, 显示XIG1定位于细胞质中。利用CRISPR/Cas9系统对感病籼稻品种IR24的Xig1靶点进行基因组编辑, 获得并评价了多个Xig1定点突变株系对白叶枯菌的抗性。与野生型相比, 8个IR24的Xig1基因定点突变株系对水稻白叶枯病的抗性得到明显提高, 而农艺性状无显著差异。Xig1是新发现的水稻白叶枯病感病基因, 该基因在水稻白叶枯病感病性中贡献的研究, 不仅为创制新的抗病资源提供理论指导, 还将丰富和加深我们对植物先天免疫系统的认知。

关键词: 水稻, 白叶枯病, Xig1, CRISPR/Cas9

Abstract:

The rice bacterial blight susceptible gene Xig1 (Xoo-induced-gene 1), was found highly induced by Xanthomonas oryzae pv. oryzae (Xoo) in susceptible parent line IR24 but not in introgression line W6023. In this study, we cloned and sequenced Xig1 alleles isolated from W6023 and IR24, and the main difference in nucleotide sequences between Xig1 alleles of W6023 and IR24 was in the promoter region. Subcellular localization in rice protoplast indicated that XIG1 localized to cytoplasm. CRISPR/Cas9-based genome editing technologies were also applied to knock out Xig1 in IR24. Eight Xig1-edited mutant lines showed a higher resistance to Xoo, and all agronomic traits surveyed are consistent. Xig1 is a novel susceptible gene for bacterial blight in rice. The studying of the mechanism of Xig1 to Xoo in rice will not only provide a theorical guidance for disease resistance resource, but also benefit the understanding of plant innate immunity.

Key words: rice, bacterial blight, Xig1, CRISPR/Cas9

图1

接种P6后IR24和W6023中Xig1基因相对表达量"

表1

Xig1IR24基因启动子区内顺式元件特征分析"

顺式作用元件
Cis-acting element
核心序列
Core sequence
功能
Function
数量
Amount
GARE-motif AAACAGA 赤霉素反应元件Gibberellin response-related elements 1
GT1-motif GGTTAA 光响应元件Light response elements 2
MBS CGGTCA, CAACTG MYB结合位点、参与干旱诱导
MYB binding sites involved in drought-inducibility
4
Skn-1motif GTCAT 胚乳表达所需元件Elements related to endosperm expression 4
TA-rich region TATATATATATATATATATATA 增强子Enhancer 1
TATA-box TATA, TTA, TAATA 核心启动子元件Core promoter element 21
TC-rich repeats GTTTTCTTAC, ATTTTCTCCA 防御和应激反应元件
Elements involved in defense and stress responsiveness
2
TGA-element AACGAC 生长素应答元件Auxin response elements 1

图2

YFP标记的XIG1::YFP融合蛋白的亚细胞定位结果 YFP: 黄色荧光; Bright field: 可见光; Merge: 黄色荧光与可见光叠加。"

图3

T0代转基因材料的分子检测 M: 分子量标记; WT: IR24 (阴性对照); 1~32: T0代转基因植株。"

图4

17个T2代基因编辑纯合株系靶点序列 大写加粗字母为PAM核苷酸序列; 下画线序列为靶点序列; 红色破折号表示核苷酸缺失; 红色小写字母表示插入的核苷酸; 斜体大写字母为起始密码子。序列右侧的数字代表各靶位点突变类型及突变所涉及的核苷酸数。“-”和“+”分别表示缺失和插入所指示的核苷酸数。100 bp为此序列中未显示的一段碱基序列。"

图5

8个T2转基因抗病株系抗病反应 A, C: 分别为接种7 d和14 d时8个转基因株系与对照IR24病斑长度症状图。B, D: 分别为接种7 d和14 d时8个转基因株系与对照IR24病斑长度柱形图。**代表极显著差异(P < 0.01)。箭头: 接种的IR24叶片。"

表2

8个基因编辑株系的农艺性状分析"

基因编辑株系
Lines
株高
Plant height
(cm)
分蘖数
Number of tillers
穗粒数
Number of grains
per panicle
结实率
Seed-setting rate
(%)
千粒重
Thousand-seed weight (g)
籽粒产量
Grain yield (g)
IR24 87.2±2.1 a 10.8±1.3 a 112.7±12.6 a 82.9±1.9 a 24.8±0.8 a 24.5±2.9 a
Xig1-3 87.1±1.6 a 11.9±1.7 a 110.9±9.9 a 80.2±1.4 a 24.4±1.0 a 26.0±4.5 a
Xig1-6 87.8±2.6 a 11.8±1.9 a 108.8±5.5 a 80.0±1.7 a 25.9±0.9 a 26.7±2.6 a
Xig1-12 86.7±2.5 a 10.6±0.9 a 114.5±10.9 a 81.2±1.5 a 24.6±0.7 a 24.9±6.0 a
Xig1-15 86.5±1.5 a 10.5±1.7 a 114.6±11.3 a 83.6±0.4 a 24.9±1.8 a 25.2±2.5 a
Xig1-20 86.7±1.5 a 11.3±1.6 a 116.7±8.9 a 84.1±1.1 a 25.1±1.2 a 28.0±3.7 a
Xig1-21 87.6±2.3 a 10.4±1.5 a 123.0±10.0 a 82.7±2.2 a 25.9±1.3 a 27.2±2.0 a
Xig1-24 88.2±1.9 a 13.2±3.2 a 97.4±4.3 a 83.2±3.3 a 25.2±0.5 a 26.8±2.1 a
Xig1-26 88.4±1.7 a 10.2±2.2 a 118.0±12.9 a 84.2±3.3 a 25.5±0.8 a 25.6±3.1 a
[1] Liu W, Liu J, Triplett L, Leach J E, Wang G L. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol, 2014,52:213-241.
doi: 10.1146/annurev-phyto-102313-045926 pmid: 24906128
[2] Feng F, Zhou J M. Plant bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant Biol, 2012,15:469-476.
doi: 10.1016/j.pbi.2012.03.004 pmid: 22465133
[3] Kay S, Hahn S, Marois E, Hause G, Bonas U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 2007,318:648-651.
pmid: 17962565
[4] Römer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science, 2007,318:645-648.
doi: 10.1126/science.1144958 pmid: 17962564
[5] Yang B, Sugio A, White F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA, 2006,103:10503-10508.
doi: 10.1073/pnas.0604088103 pmid: 16798873
[6] Zhou J H, Peng Z, Long J Y, Sosso D, Liu B, Eom J S, Huang S, Liu S Z, Vera Cruz C, Formmer W B, White F F, Yang B. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J, 2015,82:632-643.
doi: 10.1111/tpj.12838 pmid: 25824104
[7] Antony G, Zhou J H, Huang S, Li T, Liu B, White F F, Yang B. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell, 2010,22:3864-3876.
doi: 10.1105/tpc.110.078964 pmid: 21098734
[8] Yu Y, Streubel J, Balzergue S, Champion A, Boch J, Koebnik R, Feng J, Verdier V, Szurek B. Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice Nodulin-3 Os11N3 gene. Mol Plant Microbe Interact, 2011,24:1102-1113.
doi: 10.1094/MPMI-11-10-0254 pmid: 21679014
[9] Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. Five phylogenetically close rice SWEET genes confer TAL effector mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol, 2013,200:808-819.
doi: 10.1111/nph.12411
[10] Li T, Huang S, Zhou J H, Yang B. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. Mol Plant, 2013,6:781-789.
pmid: 23430045
[11] Yang Z, Sun X, Wang S, Zhang Q. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet, 2003,106:1467-1472.
pmid: 12750790
[12] Wang F J, Wang C L, Liu P Q, Lei C L, Hao W, Gao Y, Liu Y G, Zhao K J. Enhanced rice blast resistance by CRISPR/Cas9- targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One, 2016,11:e0154027.
pmid: 27116122
[13] 郝巍, 纪志远, 郑凯丽, 孙宏达, 王福军, 唐永超, 张明伟, 赵开军, 王春连. 利用基因组编辑技术创制水稻白叶枯病抗性材料. 植物遗传资源学报, 2018,19:523-530.
Hao W, Ji Z Y, Zheng K L, Sun H D, Wang F J, Tang Y C, Zhang M W, Zhao K J, Wang C L. Enhancing rice resistance to bacterial blight by genome editing. J Plant Genet Resour, 2018,19:523-530 (in Chinese with English abstract).
[14] Xu Z Y, Xu X M, Gong Q, Li Z Y, Li Y, Wang S, Yang Y Y, Ma W X, Liu L Y, Zhu B, Zhou L F, Chen G Y. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol Plant, 2019 12:1434-1446.
doi: 10.1016/j.molp.2019.08.006 pmid: 31493565
[15] Oliva R, Ji C H, Atienza-Grande G, Huguet-Tapia J C, Perez-Quintero A, Li T, Eom J S, Li C H, Nguyen H, Liu B, Auguy F, Sciallano C, Luu V T, Dossa G S, Cunnac S, Schmidt S M, Slamet-Loedin I H, Vera Cruz C, Szurek B, Frommer W B, White F F, Yang B. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol, 2019; 37:1344-1350.
doi: 10.1038/s41587-019-0267-z pmid: 31659337
[16] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001,25:402-408.
pmid: 11846609
[17] McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosome. Theor Appl Genet, 1988,76:815-829.
doi: 10.1007/BF00273666 pmid: 24232389
[18] Wang K, Liu Y, Li S Q. Bimolecular fluorescence complementation (BIFC) protocol for rice protoplast transformation. Bio-protocol, 2013,3(2):e979. DOI: 10.21769/BioProtoc.979.
[19] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015,8:1274-1284.
pmid: 25917172
[20] Wang C L, Zhang X P, Fang Y L, Gao Y, Zhu Q L, Zheng C K, Qin T F, Li Y Q, Che J Y, Zhang M W, Yang B, Liu Y G, Zhao K J. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant, 2015,8:290-302.
doi: 10.1016/j.molp.2014.10.010 pmid: 25616388
[21] Sugio A, Yang B, Zhu T, White F F. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice. Proc Natl Acad Sci USA, 2007,104:10720-10725.
pmid: 17563377
[22] Liao Z X, Ni Z, Wei X L, Chen L, Li J Y, Yu Y H, Jiang W, Jiang B L, He Y Q, Huang S. Dual RNA-seq of Xanthomonas oryzae pv. oryzicola infecting rice reveals novel insights into bacterial-plant interaction. PLoS One, 2019. DOI: 10.1371/journal. pone.0215039
doi: 10.1371/journal.pone.0235898 pmid: 32833999
[23] Li X X, Duan X P, Jiang H X, Sun Y J, Tang Y P, Yuan Z, Guo J K, Liang W L, Chen L, Yin J Y, Ma H, Wang J, Zheng D B. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol, 2006,141:1167-1184.
doi: 10.1104/pp.106.080580 pmid: 16896230
[24] Jiang G H, Xia Z H, Zhou Y L, Wan J, Li D Y, Chen R S, Zhai W X, Zhu L H. Testifying the rice bacterial blight resistance gene xa5, by genetic complementation and further analyzing xa5, (Xa5) in comparison with its homolog TFIIAγ1. Mol Genet Genomics, 2006,275:354-366.
doi: 10.1007/s00438-005-0091-7 pmid: 16614777
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!