作物学报 ›› 2020, Vol. 46 ›› Issue (9): 1351-1358.doi: 10.3724/SP.J.1006.2020.03008
李健1,2(), 王逸茹2, 张凌霄3, 孙明昊1,2, 秦阳2, 郑军1,2,*()
LI Jian1,2(), WANG Yi-Ru2, ZHANG Ling-Xiao3, SUN Ming-Hao1,2, QIN Yang2, ZHENG Jun1,2,*()
摘要:
土壤盐化会影响作物正常生长发育, 导致农作物减产。植物在长期适应环境的过程中, 进化出了相应的耐盐分子机制。钙调磷酸酶B类蛋白(CBL)及CBL互作蛋白激酶(CIPK)参与植物对盐胁迫的响应。本研究鉴定到一个拟南芥AtSOS2的同源基因ZmCIPK24-2, 实时荧光定量聚合酶链式反应结果表明ZmCIPK24-2基因在玉米各组织部位广泛表达, 其中在花粉表达量最高; ZmCIPK24-2受盐胁迫诱导表达。ZmCIPK24-2能部分互补拟南芥atsos2突变体的盐敏感表型, 在高盐浓度下转基因株系比atsos2突变体的存活率显著提高, 根长显著增长。亚细胞定位实验表明ZmCIPK24-2定位于细胞质、细胞膜与核膜。利用酵母双杂交实验及LUC互补成像实验发现ZmCIPK24-2与玉米CBLs家族中的ZmCBL1、ZmCBL4、ZmCBL8和ZmCBL9互作。本研究为解析玉米CBL-CIPK信号通路的功能提供了新的实验证据。
[1] |
Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016,167:313-324.
doi: 10.1016/j.cell.2016.08.029 pmid: 27716505 |
[2] |
Rana M, Mark T. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008,59:651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[3] |
Ren Z, Zheng Z M, Chinnusamy V, Zhu J H, Cui X P, Iida K, Zhu J K. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis. Proc Natl Acad Sci USA, 2010,107:5669-5674.
doi: 10.1073/pnas.0910798107 pmid: 20212128 |
[4] |
Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol, 2000,124:941-948.
doi: 10.1104/pp.124.3.941 |
[5] |
D’Angelo C, Weinl S, Batistic O, Pandey G K, Cheong Y H, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J. Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J, 2006,48:857-872.
pmid: 17092313 |
[6] |
Hashimoto K, Eckert C, Anschutz U, Scholz M, Held K, Waadt R, Reyer A, Hippler M, Becker D, Kudla J. Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL- interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. J Bio Chem, 2012,287:7956-7968.
doi: 10.1074/jbc.M111.279331 |
[7] |
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher, K. Advances and current challenges in calcium signaling. New Phytol, 2018,218:414-431.
doi: 10.1111/nph.14966 pmid: 29332310 |
[8] |
Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants . Plant J, 2000,23:319-327.
doi: 10.1046/j.1365-313x.2000.00787.x pmid: 10929125 |
[9] |
Pandey G K, Cheong Y H, Kim K N, Grant J J, Li L G, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell, 2004,16:1912-1924.
doi: 10.1105/tpc.021311 pmid: 15208400 |
[10] |
Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J. The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J, 2003,36:457-470.
pmid: 14617077 |
[11] |
Ishitani M, Liu J, Halfter U, Kim C S, Shi W M, Zhu J K. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000,12:1667-1677.
pmid: 11006339 |
[12] |
Gutiérrez-Beltrán E, Personat J M, de la Torre F, del Pozo O. A universal stress protein involved in oxidative stress is a phosphorylation target for protein kinase CIPK6. Plant Physiol, 2017,173:836-852.
doi: 10.1104/pp.16.00949 pmid: 27899535 |
[13] |
Yang Y, Wu Y, Ma L, Yang, Z J, Dong Q Y, Li Q P, Ni X P, Kudla J, Song C P, Guo Y. The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis. Plant Cell, 2019,31:1367-1384.
doi: 10.1105/tpc.18.00568 pmid: 30962395 |
[14] |
Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002,14:S165-S183.
doi: 10.1105/tpc.000596 pmid: 12045276 |
[15] |
Ma L, Ye J, Yang Y, Lin H, Yue L, Luo J, Long Y, Fu H H, Liu X G, Zhang Y L, Wang Y, Chen L Y, Kudla J, Wang Y J, Han S C, Song C P, Guo Y. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev Cell, 2019,48:697-709.
doi: 10.1016/j.devcel.2019.02.010 pmid: 30861376 |
[16] | 陈勋基. 玉米ZmCIPK12和ZmCIPK21基因的克隆及抗逆分子机理研究. 中国农业大学研究生院博士学位论文, 北京, 2014. pp 14-65 |
Chen X J. Cloning and Molecular Mechanism Analysis of Stress Tolerance Genes ZmCIPK12 and ZmCIPK21 from Maize. PhD Dissertation of China Agricultural University, Beijing, China, 2014. pp 14-65 (in Chinese with English abstract). | |
[17] |
Zhang F, Li L, Jiao Z, Chen Y, Liu H, Chen X, Zheng J. Characterization of the calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Plant Sci, 2016,253:118-129.
doi: 10.1016/j.plantsci.2016.09.011 pmid: 27968980 |
[18] |
Liu J, Cheng X, Liu P, Sun J. miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiol, 2017,174:1931-1948.
doi: 10.1104/pp.17.00445 pmid: 28526703 |
[19] |
Chen X, Gu Z, Xin D, Hao L, Liu C, Huang J, Zhang H. Identification and characterization of putative CIPK genes in maize. J Genet Genomics, 2011,38:77-87.
doi: 10.1016/j.jcg.2011.01.005 pmid: 21356527 |
[20] |
Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA, 2000,97:3735-3740.
pmid: 10725350 |
[21] |
Weinl S, Kudla J. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol, 2009,184:517-528.
doi: 10.1111/j.1469-8137.2009.02938.x pmid: 19860013 |
[22] |
Zhang M, Liang X, Wang L, Cao Y B, Song W B, Shi J P, Lai J S, Jiang C F. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat Plants, 2019,5:1297-1308.
pmid: 31819228 |
[23] |
Luan S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci, 2009,14:37-42.
doi: 10.1016/j.tplants.2008.10.005 pmid: 19054707 |
[24] | Ishitani M, Kim C S, Liu J, Halfter U, Zhu J K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 2000,7:3730-3734. |
[25] |
Mao J, Manik S M, Shi S, Chao J, Jin Y, Wang Q, Liu H. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana. Genes, 2016,7:62.
doi: 10.3390/genes7090062 |
[26] |
Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y Q, Shang M, Chen S Y, Pardo J M, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007,19:1415-1431.
doi: 10.1105/tpc.106.042291 pmid: 17449811 |
[27] |
Pandey G K, Grant J J, Cheong Y H, Kim B G, Li L G, Luan S. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant, 2008,1:238-248.
doi: 10.1093/mp/ssn003 pmid: 19825536 |
[28] |
Guo Y, Halfter U, Ishitani M, Zhu J K. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 2001,13:1383-1399.
doi: 10.1105/tpc.13.6.1383 pmid: 11402167 |
[29] |
Liu J, Zhu J K. A calcium sensor homolog required for plant salt tolerance. Science, 1998,280:1943-1945.
doi: 10.1126/science.280.5371.1943 pmid: 9632394 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[10] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[11] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[12] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[13] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[14] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[15] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
|