欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (1): 159-168.doi: 10.3724/SP.J.1006.2021.03016

• 耕作栽培·生理生化 • 上一篇    下一篇

AquaCrop模型在东北黑土区作物产量预测中的应用研究

崔颖(), 蔺宏宏, 谢云*(), 刘素红   

  1. 北京师范大学地表过程与资源生态国家重点实验室, 北京 100875
  • 收稿日期:2020-03-13 接受日期:2020-08-19 出版日期:2021-01-12 网络出版日期:2020-09-15
  • 通讯作者: 谢云
  • 作者简介:E-mail: cuiying@mail.bnu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFE0118100)

Application study of crop yield prediction based on AquaCrop model in black soil region of Northeast China

CUI Ying(), LIN Hong-Hong, XIE Yun*(), LIU Su-Hong   

  1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
  • Received:2020-03-13 Accepted:2020-08-19 Published:2021-01-12 Published online:2020-09-15
  • Contact: XIE Yun
  • Supported by:
    National Key Research and Development Program of China(2017YFE0118100)

摘要:

东北黑土区是我国玉米和大豆生产基地, 为了实现利用AquaCrop模型优化管理和预测产量, 本文基于作物小区田间试验和大田观测数据, 采用OAT (one factor at a time)法分析了该模型参数的敏感性, 率定了敏感性高的参数, 并对率定后的模型进行了验证。结果表明: 玉米和大豆产量均对影响经济产量的收获指数十分敏感, 二者虽然对冠层和根系生长参数都敏感, 但有所差异: 玉米对冠层衰减系数(canopy decline coefficient, CDC)更为敏感, 而大豆则对限制冠层伸展的水分胁迫系数曲线的形状因子(shape factor for water stress coefficient for canopy expansion, Pexshp)更为敏感; 玉米因根系深对最大有效根深(maximum effective rooting depth, Zx)更敏感, 大豆因根系浅对根区根系伸展曲线的形状因子(shape factor describing root zone expansion, Rexshp)更敏感。由于玉米需水量大, 对冠层形成和枯萎前的作物系数(crop coefficient before canopy formation and senescence, KcTr,x)和归一化水分生产力(normalized water productivity, WP*)很敏感, 大豆则是一般敏感。率定后模型模拟玉米产量与实测产量的回归系数由0.34提升至0.89, 模拟大豆产量与实测产量的回归系数由0.80提升至0.88。进一步用大田实测产量的验证结果表明: 预测的玉米与大豆产量与实测产量间回归方程的决定系数(coefficient of determination, R2)分别为0.775和0.779, 均方根误差(root mean square error, RMSE)分别为1.076 t hm-2和0.299 t hm-2, 标准均方根误差(normalized root mean square error, NRMSE)分别为0.097和0.178, 模拟效率(model efficiency, ME)分别为0.747和0.730, 率定后的AquaCrop模型能较精准地模拟东北黑土区玉米和大豆产量, 可用于产量预测或优化管理。

关键词: AquaCrop模型, 东北黑土区, 敏感性分析, 参数率定, 玉米, 大豆

Abstract:

Northeast black soil area is the production area of maize and soybean in China. In order to optimize the agricultural management and forecast crop yield with AquaCrop model, we use OAT (one factor at a time) method to analyze the sensitivity of the model parameters based on the experiment and field observation data, and to validate the model after calibrated the high sensitivity parameters. The results of sensitivity analysis showed that the yields of maize and soybean were both extremely sensitive to the reference harvest index (HI0) and the parameters of canopy growth and root growth. The difference was that maize was more sensitive to the canopy decline coefficient (CDC), while soybean was more sensitive to the shape factor for water stress coefficient for canopy expansion (Pexshp). Maize was more sensitive to the maximum effective rooting depth (Zx) because of its deep root, while soybean was more sensitive to the shape factor describing root zone expansion (Rexshp) because of its short roots. Maize was extremely sensitive to the crop coefficient before canopy formation and senescence (KcTr,x) and the normalized water productivity (WP*) due to the large water demand, while soybean was only generally sensitive. After calibrated the high sensitivity parameters with experiment data, the regression coefficient of simulated yield and measured yield of maize increased from 0.34 to 0.89, and the regression coefficient of simulated yield and measured yield of soybean increased from 0.80 to 0.88. Furthermore, the validation results of field observation data indicated that the determination coefficients (R2), the root mean square error (RMSE), the normalized root mean square error (NRMSE) and the model efficiency (ME) of the AquaCrop model of maize and soybean were 0.775 and 0.779, 1.076 t hm-2 and 0.299 t hm-2, 0.097 and 0.178, 0.747 and 0.730, respectively. The calibrated AquaCrop model can accurately simulate the yield of corn and soybean in the black soil area of Northeast China, and is useful for yield prediction and optimal management.

Key words: AquaCrop model, Northeastern China, sensitivity analysis, parameter calibration, maize, soybean

表1

试验点的土壤物理参数表"

点位Location 容重
Bulk
density
(g cm-3)
田间持水量
Field
capacity (%)
凋萎湿度
Wilting point (%)
有机质含量
Organic
content (%)
氢离子浓度指数
Hydrogen ion concentration (pH)
碱解氮含量
Available
nitrogen content
(mg kg-1)
速效磷含量
Available
phosphorus content
(mg kg-1)
速效钾含量
Available
potassium content
(mg kg-1)
1 1.48 30.45 15.40 3.65 6.21 142.42 6.69 44.23
2 1.43 26.85 14.48 2.46 5.86 103.13 4.19 36.19
3 1.43 28.24 16.35 2.01 5.77 69.59 3.02 46.24
4 1.54 29.39 16.12 1.38 5.91 71.98 2.24 44.23
5 1.25 45.19 18.16 2.73 5.79 117.88 2.64 36.37
6 1.36 33.86 16.94 2.15 5.79 115.15 2.82 39.36
7 1.24 38.70 17.61 2.63 5.79 88.38 3.35 44.36
8 1.37 33.53 15.78 2.53 5.67 65.65 1.47 35.37
9 1.43 28.41 11.48 0.92 5.90 38.66 2.84 25.38
10 1.45 28.10 11.11 1.40 5.68 53.83 4.67 47.35
11 1.63 18.36 10.00 0.68 6.10 30.03 1.56 14.08
12 1.51 24.75 11.89 2.36 6.19 74.65 7.60 55.35
13 1.64 17.52 8.15 1.25 6.13 46.99 12.27 34.18
14 1.37 27.65 10.94 2.39 6.38 75.56 24.97 441.73

表2

AquaCrop模型待敏感性分析参数介绍"

符号
Symbol
含义
Description
Pexp-up 限制冠层伸展的土壤水分消耗上限阈值。Soil water depletion threshold for canopy expansion-upper threshold.
Pexp-lw 限制冠层伸展的土壤水分消耗下限阈值。Soil water depletion threshold for canopy expansion-lower threshold.
Pexshp 限制冠层伸展的水分胁迫系数曲线的形状因子。Shape factor for Water stress coefficient for canopy expansion.
DeKcTr,x 因衰老、氮元素亏缺导致的作物系数下降速率。Decline of crop coefficient as a result of ageing, nitrogen deficiency.
KcTr,x 冠层形成和枯萎前的作物系数。Crop coefficient before canopy formation and senescence.
Rexshp 根区根系伸展曲线的形状因子。Shape factor describing root zone expansion.
Zmin 根系初始深度。Minimum effective rooting depth.
Zx 最大有效根深。Maximum effective rooting depth.
WP*yf 产量形成期的归一化水分生产力。
Water productivity normalized for ET0 and CO2 during yield formation (as percent WP* before yield formation).
WP* 归一化水分生产力。Water productivity normalized for ET0 and CO2.
CCx 最大冠层覆盖度。Maximum canopy cover.
CGC 冠层生长系数。Canopy growth coefficient.
CDC 冠层衰减系数。Canopy decline coefficient.
HI0 参考收获指数。Reference harvest index.

表3

AquaCrop模型部分参数相对敏感度"

模型参数
Parameter
玉米Maize 大豆Soybean
相对敏感度RS 敏感程度Sensitivity 相对敏感度RS 敏感程度Sensitivity
Pexp-up 0.0023 低敏感Low sensitive 0.0223 低敏感Low sensitive
DeKcTr,x 0.0138 低敏感Low sensitive 0.0871 低敏感Low sensitive
Pexp-lw 0.0369 低敏感Low sensitive 0.1480 一般敏感General sensitive
Pexshp 0.0192 低敏感Low sensitive 0.9561 极敏感Extremely sensitive
Rexshp 0.0374 低敏感Low sensitive 1.9893 极敏感Extremely sensitive
Zmin 0.2321 一般敏感General sensitive 0.0871 低敏感Low sensitive
WP*yf 0.4407 一般敏感General sensitive 0.3450 一般敏感General sensitive
CCx 0.5556 一般敏感General sensitive 0.4995 一般敏感General sensitive
CGC 0.2011 一般敏感General sensitive 0.3961 一般敏感General sensitive
CDC 0.7901 极敏感Extremely sensitive 0.3745 一般敏感General sensitive
HI0 1.0185 极敏感Extremely sensitive 0.3897 一般敏感General sensitive
Zx 0.8585 极敏感Extremely sensitive 0.1197 一般敏感General sensitive
WP* 0.8509 极敏感Extremely sensitive 0.4295 一般敏感General sensitive
KcTr,x 0.7657 极敏感Extremely sensitive 0.6034 极敏感Extremely sensitive

表4

AquaCrop模型模拟东北黑土区典型作物生长的参数率定结果"

符号Notation 含义
Description
单位
Unit
默认值
Default value
率定值Calibration value
玉米Maize 大豆Soybean
Pexp-up 限制冠层伸展的土壤水分消耗上限阈值。
Soil water depletion threshold for canopy expansion-upper
threshold.
% of TAW 0.60 0.60 0.35
Pexp-lw 限制冠层伸展的土壤水分消耗下限阈值。
Soil water depletion threshold for canopy expansion-lower
threshold.
% of TAW 0.25 0.14 0
Pexshp 限制冠层伸展的水分胁迫系数曲线的形状因子。
Shape factor for water stress coefficient for canopy expansion.
3.0 2.9 4.0
DeKcTr,x 因衰老、氮元素亏缺导致的作物系数下降速率。
Decline of crop coefficient as a result of ageing, nitrogen
deficiency.
% d-1 0.150 0.300 0.300
KcTr,x 冠层形成和枯萎前的作物系数。
Crop coefficient before canopy formation and senescence.
1.10 1.05 1.10
Rexshp 根区根系伸展曲线的形状因子。
Shape factor describing root zone expansion.
1.5 1.3 1.5
Zx 最大有效根深。
Maximum effective rooting depth.
m 1.0 2.3 1.6
WP*yf 产量形成期的归一化水分生产力。
Water productivity normalized for ET0 and CO2 during yield
formation.
% 100 100 51
WP* 归一化水分生产力。
Water productivity normalized for ET0 and CO2.
g m-2 17.0 33.7 15.0
CCx 最大冠层覆盖度。Maximum canopy cover. % 80 96 98
CGC 冠层生长系数。Canopy growth coefficient. % d-1 15.0 15.8 10.0
CDC 冠层衰减系数。Canopy decline coefficient. % d-1 12.8 11.7 21.3
HI0 参考收获指数。Reference harvest index. % 50 58 43

图1

玉米(a)和大豆(b)的模拟产量与实测产量对比"

[1] Monteith J L. The quest for balance in crop modeling. Agron J, 1996,88:695-697.
doi: 10.2134/agronj1996.00021962008800050003x
[2] Van Diepen C A, Wolf J, Van Keulen H, Rappoldt C. WOFOST: a simulation model of crop production. Soil Use Manag, 1989,5:16-24.
[3] Steduto P, Hsiao T C, Raes D, Fereres E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron J, 2009,101:426-437.
[4] 邢会敏, 李振海, 徐新刚, 冯海宽, 杨贵军, 陈召霞. 基于遥感和AquaCrop作物模型的多同化算法比较. 农业工程学报, 2017,33(13):183-192.
Xing H M, Li Z H, Xu X G, Feng H K, Yang G J, Chen Z X. Multi-assimilation methods based on AquaCrop model and remote sensing data. Trans CSAE, 2017,33(13):183-192 (in Chinese with English abstract).
[5] Raes D, Steduto P, Hsiao T C, Fereres E. AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron J, 2009,101:438-447.
[6] 孙仕军, 张琳琳, 陈志君, 孙娟. AquaCrop作物模型应用研究进展. 中国农业科学, 2017,50:3286-3299.
Sun S J, Zhang L L, Chen Z J, Sun J. Advances in AquaCrop model research and application. Sci Agric Sin, 2017,50:3286-3299 (in Chinese with English abstract).
[7] Todorovic M, Albrizio R, Zivotic L, Abi Saab M-T, Stöckle C, Steduto P. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agron J, 2009,101:509-521.
[8] 秦其明, 范闻捷, 任华忠. 农田定量遥感理论、方法与应用. 北京: 科学出版社, 2018. pp 333-345.
Qin Q M, Fan W J, Ren H Z. Theory, Method and Application of Farmland Quantitative Remote Sensing. Beijing: Science Press, 2018. pp 333-345(in Chinese).
[9] 戴明宏, 陶洪斌, 廖树华, 王利纳, 王璞. 基于CERES-Maize模型的华北平原玉米生产潜力的估算与分析. 农业工程学报, 2008,24(4):30-36.
Dai M H, Tao H B, Liao S H, Wang L N, Wang P. Estimation and analysis of maize potential productivity based on CERES-Maize model in the North China Plain. Trans CSAE, 2008,24(4):30-36 (in Chinese with English abstract).
[10] Passioura J B. Simulation models: science, snake oil, education, or engineering? Agron J, 1996,88:690-694.
[11] 刘兴冉, 沈彦俊. AquaCrop模型在华北平原夏玉米水分研究中的应用. 农业现代化研究, 2014,35:371-375.
Liu X R, Shen Y J. Application of AquaCrop model for simulating the summer maize water use in North China Plain. Res Agric Modern, 2014,35:371-375 (in Chinese with English abstract).
[12] 刘琦, 龚道枝, 郝卫平, 王罕博, 高翔, 梅旭荣. 利用AquaCrop模型模拟旱作覆膜春玉米耗水和产量. 灌溉排水学报, 2015,34(6):54-61.
Liu Q, Gong D Z, Hao W P, Wang H B, Gao X, Mei X R. Simulating water use and yield of film mulched maize with AquaCrop model. J Irrig Drain, 2015,34(6):54-61 (in Chinese with English abstract).
[13] Iqbal M A, Shen Y J, Stricevic R, Pei H W, Sun H Y, Amiri E, Penas A, Rio S. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agric Water Manage, 2014,135:61-72.
[14] Daniel C. One-at-a-Time plans. J Am Stat Assoc, 1973,68:353-360.
[15] 刘刚, 谢云, 高晓飞, 冯艳杰. ALMANAC作物模型参数的敏感性分析. 中国农业气象, 2008,29:259-263.
Liu G, Xie Y, Gao X F, Feng Y J. Sensitivity analysis on parameters of ALMANAC crop model. J Agrometeorol, 2008,29:259-263 (in Chinese with English abstract).
[16] 宋明丹, 冯浩, 李正鹏, 高建恩. 基于Morris和EFAST的CERES-Wheat模型敏感性分析. 农业机械学报, 2014,45(10):124-131.
Song M D, Feng H, Li Z P, Gao J E. Global sensitivity analyses of DSSAT-CERES-Wheat model using Morris and EFAST methods. Trans CSAM, 2014,45(10):124-131 (in Chinese with English abstract).
[17] 王玉玺, 解运杰, 王萍. 东北黑土区水土流失成因分析. 水土保持应用技术, 2002, (3):27-29.
Wang Y X, Xie Y J, Wang P. Analysis on the causes of soil erosion in the black soil area of Northeast China. Technol Soil Water Conserv, 2002, (3):27-29 (in Chinese).
[18] 程叶青, 张平宇. 中国粮食生产的区域格局变化及东北商品粮基地的响应. 地理科学, 2005,25:513-520.
Cheng Y Q, Zhang P Y. Regional patterns changes of Chinese grain production and response of commodity grain base in Northeast China. Sci Geogr Sin, 2005,25:513-520 (in Chinese with English abstract).
[19] 杨春葆. 黑土区不同灌溉量对土壤水分动态和大豆产量的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2014.
Yang C B. The Effect of Irrigation Levels on Soil Water Dynamics and Soybean Yield in Black Soil Region. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2014 (in Chinese with English abstract).
[20] 胡刚, 伍永秋, 刘宝元, 谢云. GPS和GIS进行短期沟蚀研究初探——以东北漫川漫岗黑土区为例. 水土保持学报, 2004,18(4):16-19.
Hu G, Wu Y Q, Liu B Y, Xie Y. Preliminary research on short-term channel erosion using GPS and GIS. J Soil Water Conserv, 2004,18(4):16-19 (in Chinese with English abstract).
[21] Wu Y Q, Zheng Q H, Zhang Y G, Liu B Y, Cheng H, Wang Y Z. Development of gullies and sediment production in the black soil region of northeastern China. Geomorphology, 2008,101:683-691.
[22] Doorenbos J, Kassam A H. Yield response to water. Irrig Drain Pap, 1979,33:257.
[23] Allen R G, Pereira L S, Raes D, Smith M. Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Rome: FAO, 1998. [2020-06-30]. http://www.researchgate.net/profile/Anoop_Srivastava7/post/Which_method_of_calculating_crop_evapotransppiration_is_globally_accepted/attachment/5a1e5aeeb53d2f6747c6d144/AS:565926494179334@1511938798907/download/Allen_FAO1998.pdf.
[24] Hsiao T C. The soil-plant-atmosphere continuum in relation to drought and crop production. In: O’Toole J C, eds. Drought Resistance in Crops with Emphasis on Rice. Philippines: International Rice Research Institute, 1982. pp 39-52.
[25] 邢会敏, 徐新刚, 冯海宽, 李振海, 杨福芹, 杨贵军, 贺鹏, 陈召霞. 基于AquaCrop模型的北京地区冬小麦水分利用效率. 中国农业科学, 2016,49:4507-4519.
Xing H M, Xu X G, Feng H K, Li Z H, Yang F Q, Yang G J, He P, Chen Z X. Water use efficiency of winter wheat based on AquaCrop model in Beijing. Sci Agric Sin, 2016,49:4507-4519 (in Chinese with English abstract).
[26] 金秀良. 基于AquaCrop模型与多源遥感数据的北方冬小麦水分利用效率估算. 扬州大学博士学位论文, 江苏扬州, 2015.
Jin X L. Estimation of Water Use Efficiency of Winter Wheat Based on AquaCrop Model and Multi-source Remote Sensing Data in Northern. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2015 (in Chinese with English abstract).
[27] Hsiao T C, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E. AquaCrop: the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J, 2009,101:448-459.
[28] Xie Y, Kiniry J R, Williams J R. The ALMANAC model’s sensitivity to input variables. Agric Syst, 2003,78:1-16.
[29] Heiniger R W, Vanderlip R L, Welch S M, Muchow R C. Developing guidelines for replanting grain sorghum: II. Improved methods of simulating caryopsis weight and tiller number. Agron J, 1997,89:75-83.
[30] Saltelli A. Sensitivity analysis: could better methods be used? J Geophys Res-Atmos, 1999,104:3789-3793.
[31] Vanuytrecht E, Raes D, Willems P. Global sensitivity analysis of yield output from the water productivity model. Environ Modell Software, 2014,51:323-332.
doi: 10.1016/j.envsoft.2013.10.017
[32] 邢会敏, 相诗尧, 徐新刚, 陈宜金, 冯海宽, 杨贵军, 陈召霞. 基于EFAST方法的AquaCrop作物模型参数全局敏感性分析. 中国农业科学, 2017,50:64-76.
doi: 10.3864/j.issn.0578-1752.2017.01.006
Xing H M, Xiang S Y, Xu X G, Chen Y J, Feng H K, Yang G J, Chen Z X. Global sensitivity analysis of AquaCrop crop model parameters based on EFAST method. Sci Agric Sin, 2017,50:64-76 (in Chinese with English abstract).
[33] 付驰, 李双双, 李晶, 王泳超, 芦玉双, 许为政, 魏湜. AquaCrop作物模型在松嫩平原春麦区的校正和验证. 灌溉排水学报, 2012,31(5):99-102.
Fu C, Li S S, Li J, Wang Y C, Lu Y S, Xu W Z, Wei S. Calibration and validation of AquaCrop model in spring wheat region of Songnen Plain. J Irrig Drain, 2012,31(5):99-102 (in Chinese with English abstract).
[34] Moulin S, Bondeau A, Delecolle R. Combining agricultural crop models and satellite observations: from field to regional scales. Int J Remote Sens, 1998,19:1021-1036.
[35] 黄健熙, 武思杰, 刘兴权, 马冠南, 马鸿元, 吴文斌, 邹金秋. 基于遥感信息与作物模型集合卡尔曼滤波同化的区域冬小麦产量预测. 农业工程学报, 2012,28(4):142-148.
Huang J X, Wu S J, Liu X Q, Ma G N, Ma H Y, Wu W B, Zou J Q. Regional winter wheat yield forecasting based on assimilation of remote sensing data and crop growth model with Ensemble Kalman method. Trans CSAE, 2012,28(4):142-148 (in Chinese with English abstract).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!