欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (1): 71-79.doi: 10.3724/SP.J.1006.2021.02025

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个新的水稻脆秆突变体bc17的鉴定及基因定位

姜鸿瑞1,2(), 叶亚峰1, 何丹1, 任艳1, 杨阳1, 谢建1, 程维民1, 陶亮之1, 周利斌3, 吴跃进1, 刘斌美1,*()   

  1. 1中国科学院合肥物质科学研究院, 安徽合肥 230031
    2中国科学技术大学, 安徽合肥 230026
    3中国科学院近代物理研究所, 甘肃兰州 730000
  • 收稿日期:2020-04-03 接受日期:2020-09-13 出版日期:2021-01-12 网络出版日期:2020-09-29
  • 通讯作者: 刘斌美
  • 作者简介:E-mail: j602910520@163.com
  • 基金资助:
    安徽省科技重大专项(18030701205);安徽省重点研发专项(201904c03020007);国家自然科学基金项目(31701330);国家自然科学基金项目(31601828);中国科学院科技服务网络计划项目(STS计划);中国科学院科技服务网络计划项目(KFJ-STS-ZDTP-054)

Identification and gene localization of a novel rice brittle culm mutant bc17

JIANG Hong-Rui1,2(), YE Ya-Feng1, HE Dan1, REN Yan1, YANG Yang1, XIE Jian1, CHENG Wei-Min1, TAO Liang-Zhi1, ZHOU Li-Bin3, WU Yue-Jin1, LIU Bin-Mei1,*()   

  1. 1Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
    2University of Science and Technology of China, Hefei 230026, Anhui, China
    3Institute of Modern Physics,Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
  • Received:2020-04-03 Accepted:2020-09-13 Published:2021-01-12 Published online:2020-09-29
  • Contact: LIU Bin-Mei
  • Supported by:
    Anhui Science and Technology Major Project(18030701205);Anhui Key Research and Development Program(201904c03020007);National Natural Science Foundation of China(31701330);National Natural Science Foundation of China(31601828);Science and Technology Service Network Program of Chinese Academy of Sciences Project (STS Program);Science and Technology Service Network Program of Chinese Academy of Sciences Project(KFJ-STS-ZDTP-054)

摘要:

利用重离子辐照武运粳7号(Wuyunjing 7, wyj7)获得一个脆秆突变体bc17 (brittle culm 17), 该突变体脆性特征仅在茎秆中表现, 叶片正常, 并且茎秆脆性在抽穗后开始表现, 随着成熟度的增加脆性特征逐渐显著。农艺性状分析表明, 该突变体生长发育受到影响, 株高显著低于野生型, 分蘖数减少以及结实率降低。茎秆和叶片生化成分测定显示, 与野生型相比, bc17茎秆和叶片的纤维素含量分别降低22.70%和18.67%, 半纤维素含量分别升高45.76%和31.36%。bc17茎秆的抗折力、拉伸力均显著低于野生型, 表明茎秆的机械强度发生改变。组织解剖学观察发现, bc17茎秆的厚壁细胞孔隙变大, 结构疏松, 细胞数目减少。遗传分析表明, bc17的脆秆特征受单隐性核基因控制。利用图位克隆技术将bc17基因精细定位于水稻第7号染色体162 kb区域中, 生物信息学分析表明可能是一个新的水稻脆秆基因, 为揭示水稻细胞壁合成分子机制的研究提供重要的材料支撑。

关键词: 水稻, 脆秆突变体, 细胞壁, 基因定位, 纤维素含量

Abstract:

A brim culm mutant bc17 (brittle culm 17) was obtained by irradiating wyj7 (Wuyunjing 7) with heavy ions. The brittle traits of the mutant were only found in the stalks and not in the leaves. The brittleness of the culm began to appear after heading stage, while it became more obvious as rice grew from heading stage to maturity stage. The growth and development of the mutant were affected, the plant height of the mutant was significantly lower than that in the wild type, and tiller number and seed setting rate were also lower than in the wild type. Compared with wild type, the cellulose content in bc17 culms and leaves decreased by 22.7% and 18.67%, while the hemicellulose content increased by 45.76% and 31.36%, respectively. The breaking resistance and tensile force of bc17 were significantly lower than those of wild type, indicating that the mechanical strength of the culm changed. The thick-walled cells of bc17 culms had larger pores, looser structures, and fewer cells. The fragile characteristics of bc17 were controlled by a single recessive nuclear gene. The bc17 gene was located in the 162 kb region of chromosome 7 by map-based cloning. Bioinformatics analysis indicated that it might be a novel gene related to rice brittle culm. These findings provided an important material support for the research on the molecular mechanism of cell wall synthesis in rice.

Key words: rice, brittle culm mutant, cell wall, gene mapping, cellulose content

图1

突变体bc17和野生型wyj7植株及茎秆折断表现型 A: 成熟期植株; B: 成熟期茎秆折断表型; C: 成熟期叶片; D: 穗部表型。"

表1

突变体bc17与野生型wyj7农艺性状分析"

性状
Trait
突变体
Mutant (bc17)
野生型
Wild type (wyj7)
株高 Plant height (cm) 69.43±1.95** 94.6±0.80
分蘖数Tiller number per plant 9.67±0.58* 11.33±0.58
结实率 Seed fertility (%) 63.45±2.39** 87.53±4.38
千粒重 1000-grain weight (g) 23.6±0.67** 26.62±0.84
穗长 Panicle length (cm) 12.73±0.55** 15.56±0.21
每穗粒数Number of grain per panicle 111.94±12.06 128.94±9.34

表2

野生型和突变体bc17茎秆和叶片细胞壁成分分析"

成分
Component
茎秆Culm 叶片Leaf
突变体
Mutant (bc17)
野生型
Wild type (wyj7)
突变体
Mutant (bc17)
野生型
Wild type (wyj7)
纤维素 Cellulose 19.91±1.77* 25.77±1.36 29.19±2.16* 35.89±1.74
半纤维素 Hemicellulose 22.68±1.78* 15.56±0.63 30.03±1.17 22.86±2.40
木质素 Lignin 4.39±0.40 3.99±0.66 6.52±0.30* 4.61±0.24
灰分 Ash 4.21±0.13 4.19±0.59 6.65±0.12* 8.07±0.29

图2

野生型和突变体第2节间、第3节间茎秆折断力和茎秆拉伸力分析 * 表示显著差异(P < 0.05), ** 表示极显著差异(P < 0.01)。"

表3

野生型和突变体bc17倒伏指数计算"

参数
Parameters
野生型
Wild type (wyj7)
突变体
Mutant (bc17)
抗折力Breaking resistance (N) 6.38±0.59 3.33±0.11**
弯曲力矩Bending moment (N m) 6.31±0.34 3.75±0.34**
倒伏指数Lodging index 99.38±76.40 112.15±57.40

图3

野生型(左)和突变体(右)茎秆横截面"

表4

突变体bc17的遗传分析"

杂交组合
Cross
正常植株
Normal plants
脆秆株数
Number of brittle culm plants
群体总数
Total number of F2
χ2
20.05 = 3.84)
bc17/wyj7 223 78 301 0.13
bc17/9311 329 97 426 1.13

表5

bc17基因定位部分引物"

标记
Marker
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
RM500 GAGCTTGCCAGAGTGGAAAG GTTACACCGAGAGCCAGCTC
RM3743 TAGCCTTGTTCCATCCATCC CTTCTCCCTCTCCTCCTTCC
UP-81 TGCATCTCATCTCCCCTCTT TGGAGTATAACGCCGACCTC
DN-25 AGGGAAAATGCGCTGAACTA ATTCATCCATGCCCTATCCA

图4

利用分子标记对bc17基因定位"

[1] 沈革志, 王新其, 王江, 宛新彬, 李琳, 张景六. 水稻脆秆突变体bcm581-1茎秆形态结构观察、理化测定和遗传分析. 实验生物学报, 2002,35:307-312.
Shen G Z, Wang X Q, Wang J, Wan X B, Li L, Zhang J L. Stem morphological structure observation, physical and chemical determination and genetic analysis of the rice brittle stem mutant bcm581-1. J Mol Cell Biol, 2002,35:307-312 (in Chinese with English abstract).
[2] Aohara T, Kotake T, Kaneko Y, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol, 2009, 11:1886-1897.
[3] Xu J D, Zhang Q F, Zhang T, Zhang H Y, Xu P Y, Wang X D, Wu X J. Phenotypic characterization, genetic analysis and gene- mapping for a brittle mutant in rice. J Integr Plant Biol, 2008,50:319-328.
doi: 10.1111/j.1744-7909.2007.00629.x pmid: 18713364
[4] 韦存虚, 谢佩松, 周卫东, 陈义芳, 严长杰. 水稻脆性突变体叶的解剖结构和化学特性. 作物学报, 2008,34:1417-1423.
doi: 10.3724/SP.J.1006.2008.01417
Wei C X, Xie P S, Zhou W D, Chen Y F, Yan C J. Anatomical structure and chemical features of leaf in brittle mutant of rice. Acta Agron Sin, 2008,34, 1417-1423 (in Chineses with English abstract).
[5] 冯永清, 邹维华, 李丰成, 张晶, 张会, 谢国生, 涂媛苑, 路铁刚, 彭良才. 特异水稻茎秆突变体生物学特性及生物质降解效率的研究. 中国农业科技导报, 2013,15(3):77-83.
Feng Y Q, Zou W H, Li F C, Zhang J, Zhang H, Xie G S, Tu Y Y, Lu T G, Peng L C. Studies on biological characterization of rice brittle culm mutants and their biomass degradation efficiency. J Agr Sci Tech China, 2013,15(3):77-83 (in Chinese with English abstract).
[6] Li Y H, Qian Q, Zhou Y H, Yan M X, Sun L, Zhang M, Fu Z M, Wang Y H, Han B, Pang X M, Chen M S, Li J Y. Brittle culm 1, which encodes a cobra-like protein, affects the mechanical properties of rice plants. Plant Cell, 2003,9:2020-2031.
[7] Zhang B C, Zhou Y H . Rice brittleness mutants: a way to open the ‘Black Box’ of monocot cell wall biosynthesis. J Integr Plant Biol, 2011,53:136-142.
pmid: 21205179
[8] 张保才, 周奕华. 植物细胞壁形成机制的新进展. 中国科学: 生命科学, 2015,45:544-556.
Zhang B C, Zhou Y H. Plant cell wall formation and regulation. Sci China Life Sci, 2015,45:544-556 (in Chinese with English abstract).
[9] Xiong G Y, Li R, Qian Q, Song X Q, Liu X L, Yu Y C, Zeng D L, Wan J M, Li J Y, Zhou Y H. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. Plant J, 2010,64:56-70.
doi: 10.1111/j.1365-313X.2010.04308.x pmid: 20663087
[10] Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S. Rice Brittle Culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot, 2011,62:2053-2062.
doi: 10.1093/jxb/erq395 pmid: 21209026
[11] 舒亚洲, 曾冬冬, 秦冉, 金晓丽, 郑希, 石春海. 水稻脆秆突变体bc16的鉴定和基因精细定位. 中国水稻科学, 2016,30:345-355.
Shu Y Z, Zeng D D, Qin R, Jin X L, Zheng X, Shi C H. Identification and gene fine mapping of a brittle culm 16 (bc16) mutant in rice. Chin J Rice Sci, 2016,30:345-355 (in Chinese with English abstract).
[12] Katsuyuki T, Kazumasa M, Muneo Y, Katsura O, Akio M, Hirohiko H. Three distinct rice cellulose synthase catalytic subunit gnes required for cellulose synthesis in the secondary wall. Plant Physiol, 2003,133:73-83.
pmid: 12970476
[13] Yan C S, Yan S, Zeng X H, Zhang Z Q, Gu M H. Fine, mapping and isolation of Bc7(t), allelic to OsCesA4. J Genet Genomics, 2007,34:1019-1027.
doi: 10.1016/S1673-8527(07)60115-5
[14] Zhang B C, Deng L W, Qian Q, Xiong G Y, Zeng D L, Li R, Guo L B, Li J Y, Zhou Y H. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol, 2009,71:509-524.
doi: 10.1007/s11103-009-9536-4
[15] Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S. Rice Brittle Culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot, 2011,62:2053-2062.
doi: 10.1093/jxb/erq395
[16] Song X Q, Liu L F, Jiang Y J, Zhang B C, Gao Y P, Liu X L, Lin Q S, Ling H Q, Zhou Y H. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants. Mol Plant, 2013,6:768-780.
doi: 10.1093/mp/sst025
[17] Zhou Y H, Li S B, Qian Q, Zeng D L, Zhang M, Guo L B, Liu X L, Zhang B C, Deng L W, Liu X F. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice. Plant J, 2009,57:444-462.
[18] Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc Natl Acad Sci USA, 2011,108:5110-5115.
pmid: 21383162
[19] Wu B, Zhang B C, Dai Y, Zhang L, Guan S K K, Peng Y G, Zhou Y H, Zhu Z. Brittle culm 15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol, 2012,159:1440-1452.
pmid: 22665444
[20] Ye Y F, Liu B M, Zhao M, Wu K, Cheng W M, Chen X B, Liu Q, Liu Z, Fu X D, Wu Y J. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice. Plant Mol Biol, 2015,89:385-401.
pmid: 26350403
[21] Huang D B, Wang S G, Zhang B C, Shang G K K, Shi Y Y, Zhang D M, Liu X L, Wu K, Xu Z P, Fu X D. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell, 2015,27:1681-1696.
pmid: 26002868
[22] Ye Y F, Wu K, Chen J F, Liu Q, Wu Y J, Liu B M, Fu X D. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice. Rice, 2018,11:1-14.
doi: 10.1186/s12284-017-0196-8 pmid: 29305728
[23] Zhang M, Zhang B C, Qian Q, Yu Y C, Li R, Zhang J W, Liu X L, Zeng D L, Li J Y, Zhou Y H. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J, 2010,63:312-328.
doi: 10.1111/j.1365-313X.2010.04238.x pmid: 20444225
[24] Van Soest PJ, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Daily Sci, 1991,74, 3583-3597.
[25] 章忠贵, 刘斌美, 许学, 张丽丽, 王敏, 吴跃进. 水稻株高突变系的农艺性状与抗倒伏研究. 核农学报, 2010,24:430-435.
Zhang Z G, Liu B M, Xu X, Zhang L L, Wang M, Wu Y J. Agronomic characters and lodging resistance of plant height mutants of rice. Acta Agric Nucl Sin, 2010,24:430-435 (in Chinese with English abstract).
[26] Hirano K, Kotake T, Kamihara K, Tsuna K, Aohara T, Kaneko Y, Takasuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. Planta, 2010,232:95-108.
doi: 10.1007/s00425-010-1145-6 pmid: 20369251
[27] 张兰军, 张保才, 周奕华. 植物细胞壁多糖乙酰化修饰与生物学功能. 植物生理学报, 2018,54:1272-1278.
Zhang L J, Zhang B C, Zhou Y H. Progress on polysaccharide acetylation in plant cell wall. J Plant Physiol, 2018,54:1272-1278 (in Chinese with English anstract).
[28] Zhang B C, Zhang L J, Li F, Zhang D M, Liu X L, Wang H, Xu Z P, Chu C C, Zhou Y H. Control of secondary cell wall patterning involves xylan deacetylatin by a GDSL esterase. Nat Plant, 2017,3:17017.
[29] 陆荷微, 刘斌美, 陶亮之, 叶亚峰, 吴振宇, 范爽, 吴跃进, 王钰. 水稻脆茎突变体的主要性状比较研究. 杂交水稻, 2017,32(5):51-55.
Lu H W, Liu B M, Tao L Z, Ye Y F, Wu Z Y, Fan S, Wu Y J, Wang Y. Comparative studies of major characteristics of rice brittle culm mutants. Hybrid Rice, 2017,32(5):51-55 (in Chinese with English abstract).
[30] 陆荷微, 刘斌美, 陶亮之, 叶亚峰, 吴振宇, 范爽, 吴跃进, 王钰. 水稻脆性突变体w7bc5的生物学特性研究. 生物学杂志, 2018,35(1):1-4.
Lu H W, Liu B M, Tao L Z, Ye Y F, Wu Z Y, Fan S, Wu Y J, Wang Y. Characterization of a brittle culm mutant w7bc5 in japonica rice. J Biol, 2018,35(1):1-4 (in Chinese with English abstract).
[31] 吕宗友, 苏衍菁, 赵国琦, 严长杰. 全株脆性突变体在奶牛瘤胃内降解特性的研究. 中国奶牛, 2011,18(4):7-11.
Lyu Z Y, Su Y J, Zhao G Q, Yan C J. Study on degradation characteristics of whole plant fragile mutant in rumen of dairy cow. China Dairy Cattle, 2011,18(4):7-11 (in Chinese).
[32] 王艳婷, 徐正丹, 彭良才. 植物细胞壁沟槽结构与生物质利用研究展望. 中国科学: 生命科学, 2014,44:766-774.
Wang Y T, Xu Z D, Peng L C. Research progress in the groove structures of plant cell walls and biomass utilizations. Sci China Life Sci, 2014,44:766-774 (in Chinese with English abstract).
[33] 黄成, 李来庚. 植物细胞壁研究与生物质改造利用. 中国科学: 生命科学, 2016,61:3623-3629.
Huang C, Li L G. Understanding of plant cell wall biosynthesis for utilization of lignocellulosic biomass resources. Sci China: Life Sci, 2016,61:3623-3629 (in Chinese with English abstract).
[34] 黄峰, 王永泽, 周胜德, 赵锦芳, 赵筱, 王金华. 水稻脆性秸秆发酵产纤维乙醇的研究. 可再生能源, 2014,32:211-215.
Huang F, Wang Y Z, Zhou S D, Zhao J F, Zhao X, Wang J H. Study on cellulosic ethanol fermentation of brittle rice straw. Renew Energ, 2014,32:211-215 (in Chinese with English abstract).
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!