欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1863-1873.doi: 10.3724/SP.J.1006.2021.02088

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻苗期根部性状的遗传分析和最长根长QTL qLRL4的精细定位

田彪(), 丁仕林, 刘朝雷, 阮班普, 姜洪真, 郭锐, 董国军, 胡光莲, 郭龙彪, 钱前, 高振宇*()   

  1. 中国水稻研究所, 浙江杭州 310006
  • 收稿日期:2020-12-13 接受日期:2021-03-19 出版日期:2021-10-12 网络出版日期:2021-04-13
  • 通讯作者: 高振宇
  • 作者简介:E-mail: 82101186057@caas.cn, Tel: 0571-63370483
  • 基金资助:
    国家自然科学基金项目(32061143039);国家自然科学基金项目(31671761)

Genetic analysis of seedling root traits and fine mapping of the QTL qLRL4 for the longest root length in rice

TIAN Biao(), DING Shi-Lin, LIU Chao-Lei, RUAN Ban-Pu, JIANG Hong-Zhen, GUO Rui, DONG Guo-Jun, HU Guang-Lian, GUO Long-Biao, QIAN Qian, GAO Zhen-Yu*()   

  1. China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
  • Received:2020-12-13 Accepted:2021-03-19 Published:2021-10-12 Published online:2021-04-13
  • Contact: GAO Zhen-Yu
  • Supported by:
    National Natural Science Foundation of China(32061143039);National Natural Science Foundation of China(31671761)

摘要:

为了解析水培苗期根系相关性状的遗传调控, 以籼稻9311和粳稻日本晴(Nipponbare, NPB)为亲本的148个株系构成的重组自交系群体为材料, 对水稻幼苗根系相关性状开展QTL分析。在2次重复中共检测到26个控制最长根长、总根系长、根表面积、根体积和根直径的QTL, 分布在水稻第1、2、4、7、9、10、11号共7条染色体上, 发现了水稻第2、4、7和10号染色体上的4个QTL簇, 包括第4号染色体上控制最长根长的QTL qLRL4。为了精细定位该QTL, 我们构建了以9311为背景、插入缺失标记IND4-1和IND4-4间来自NPB的近等系NIL-qLRL4。利用NIL-qLRL4和9311构建的F2群体, 最终将qLRL4精细定位在标记IND4-1和IND4-3之间约68.23 kb的区间内并预测了候选基因。此根长QTL的精细定位将有助于水稻根长遗传机理的研究, 为探究水稻根系形态建成的分子机制奠定了基础。

关键词: 水稻, 根部性状, 最长根长, qLRL4, 精细定位

Abstract:

In order to analyze the genetic basis of root traits at seedling stage, we performed QTL analysis of root morphology with 148 recombinant inbred lines derived from indica variety 9311 and japonica variety Nipponbare (NPB). In two repetitions, a total of 26 QTLs were detected for the longest root length, total root length, root surface area, root volume, and root diameter, distributed on chromosomes 1, 2, 4, 7, 9, 10, and 11 in rice. Four QTL clusters on chromosomes 2, 4, 7, and 10 were found, including a major QTL qLRL4 controlling the longest root length. To fine mapping of the major QTL, we constructed a near isogenic line NIL-qLRL4 with a segment from NPB between markers IND4-1 and IND4-4 with 9311 background. With a F2 population derived from the NIL-qLRL4 and 9311, we fine mapped the qLRL4 within ~68.23 kb region between markers IND4-1 and IND4-3, where eight candidate genes located. Fine mapping of this QTL for root length will help explore genetic mechanism of root elongation and morphogenesis in rice.

Key words: rice, root trait, the longest root length, qLRL4, fine mapping

表1

qLRL4精细定位的InDel标记引物"

分子标记
Marker
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
IND4-1 TTGGCAGGTAGAGTCCAAAGG TGGCTTAAGAGACGTCCCTAAC
IND4-2 TGCCCTGGAAGTATAAGGATG ATGTCTGCATACCAGAACAAAAG
IND4-3 GCGACCACATAAATACTGTTG AGGTGGGACTATATATTAATGG
IND4-4 AGTTGTTATTCATCGCCATCGG TGATATACCCGAGACCAAAAGTAGC

表2

候选基因实时定量PCR引物"

基因
Gene
正向序列
Forward primer (5′-3′)
反向序列
Reverse primer (5′-3′)
LOC_Os04g58870 AATCACTTGAGCAAGCTCTTGG ATGCAAACATGCACAATGCAG
LOC_Os04g58880 AAGAGCTGCGGTCAAAGAGAG ACTCACGCAACTCCGTATCTGG
LOC_Os04g58890 TCGTCGCCGACAGGGTG AGGTCGGTCCCCTCCTCG
LOC_Os04g58900 ACGTATGATTTCCCTGTTGATGTG ACCTCATCTTCCTTCCCAGTAAATC
LOC_Os04g58910 AGAAATGGAAGCCTGTGAACGAC TCATGCTGGCCTCTGCGTC
LOC_Os04g58920 AGCTGTGCGTGGTGGCGC CTGCAAGCAGGGCGAGTTCC
LOC_Os04g58940 AGGCTCTTCGGCTACCTGC ATCAGCTCATCCCCATCACC
LOC_Os04g58960 AGCAGATGACCAATGGTGGG TGGTTGCTGGGTGAGCTAGAAC
Histone H3 GGTCAACTTGTTGATTCCCCTCT AACCGCAAAATCCAAAGAACG

表3

9311和NPB的根系性状"

重复
Repeat
品种
Variety
最长根长
LRL (cm)
总根系长
TRL (cm)
根表面积
RSA (cm2)
根体积
RV (cm3)
根直径
RD (mm)
I 9311 17.3 ± 0.4** 331.38 ± 30.07** 34.23 ± 3.93** 0.36 ± 0.05** 0.32 ± 0.01**
NPB 15.9 ± 0.8 253.08 ± 36.76 27.33 ± 1.65 0.20 ± 0.06 0.25 ± 0.03
II 9311 17.9 ± 0.5** 360.36 ± 31.64** 34.46 ± 0.99** 0.37 ± 0.01** 0.33 ± 0.01**
NPB 15.6 ± 0.6 277.22 ± 28.44 24.44 ± 2.27 0.21 ± 0.02 0.26 ± 0.01

图1

9311和NPB在营养液中培养21 d的根系形态 NPB: 日本晴; 标尺为3 cm。"

表4

RIL群体的根系性状"

LRL: 最长根长; TRL: 总根系长; RSV: 根表面积; RV: 根体积; RD: 根直径。

LRL: the longest root length; TRL: total root length; RSV: root surface area; RV: root volume; RD: root diameter.

重复
Repeat
统计参数
Parameter
最长根长
LRL (cm)
总根系长
TRL (cm)
根表面积
RSA (cm2)
根体积
RV (cm3)
根直径
RD (mm)
I 均值 Mean 14.8 296.35 25.26 0.22 0.25
标准差 SD 2.3 86.90 7.40 0.08 0.04
变幅 Range 8.9-24.0 132.88-562.92 9.26-45.12 0.06-0.45 0.15-0.34
偏度 Skewness 0.50 0.85 0.40 0.31 -0.44
峰度 Kurtosis 0.90 0.72 -0.09 -0.27 -0.08
II 均值 Mean 14.3 331.61 25.62 0.26 0.23
标准差 SD 2.9 57.19 7.27 0.08 0.07
变幅 Range 8.9-24.0 186.30-481.50 9.82-45.33 0.09-0.62 0.08-0.59
偏度 Skewness 0.39 0.01 0.39 0.62 0.85
峰度 Kurtosis 0.24 0.03 -0.08 1.45 3.53

图2

在2次重复中9311和NPB构建的RIL群体5个根系性状的频数分布 NPB: 日本晴; 倒三角指示亲本的平均值; LRL: 最长根长; TRL: 总根系长; RSV: 根表面积; RV: 根体积; RD: 根直径。"

表5

RIL群体根系性状间的相关系数"

重复
Repeat
性状
Trait
最长根长
LRL (cm)
总根系长
TRL (cm)
根表面积
RSA (cm2)
根体积
RV (cm3)
I 总根系长 TRL 0.359**
根表面积 RSA 0.399** 0.946**
根体积 RV 0.365** 0.859** 0.975**
根直径 RD 0.011 0.408** 0.571** 0.671**
II 总根系长 TRL 0.041
根表面积 RSA 0.030 0.684**
根体积 RV 0.043 0.749** 0.831**
根直径 RD 0.084 0.799** 0.737** 0.914**

表6

QTL定位的SSR和STS标记引物"

分子标记
Marker
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
M1-2 ACAATTTGGAGCAAGAAAGA CTTGTCGCAGTACAGTTTTG
M1-4 AACATCGAGAATGTGAATCC TGCTGATTCGTATAGCTTTG
M1-16 AGAGAGCTGTACCAAAGCTG TACATCATATGCCACCAAAC
分子标记
Marker
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
M1-18 CCTAAATGACAAAGTTTGGG TGTTTGGACTTAGAAATCTCG
M1-19 TTTCCATGGCTATTGCTAAC ATCTTGGGGATCATGAATTG
M1-20 TGCATTTATGCATCTACTGG TCACTGCATTTGCAAGTTAC
M1-21 AAGATGATGAGGTTCATTGG TATACGACGTGGCTGTATCA
M1-22 GATGTCACTTTAGCGGTAGC AAAATTTTCTTTCTCGAGGG
M2-10 TGCTGCTTCTGTCCAGTGAG GGATCATAACAAGTGCCTCG
M2-13 ACAAGGAAATCCAAAGCTG CTTCTTCAAAAATTGACGGT
M2-14 GTAGCAGAAACCAATGCTC ATTCGCGATAAATATGGACT
M4-10 AAAGAAGAAGATGAGTCCCC AGACATATTCCCGTCTGTTG
M4-13 AATTGGAGCTAGTAGTTGGCT AGCGAAGTAAACAAGAGCTG
M7-1 TATGTCCTTAGCATGGAAGACC CGTTGTTGATCATCTGGTACG
M7-3 GTCCATGCATCCATCTCTAG ACGGAAGGAATACGTCTGTA
M9-7 GATTAATTAAGGAAAAAGTTACACA TTTAAGAAACACAGTCCATAACA
M9-10 CTCGTTTATTACCTACAGTACC CTACCTCCTTTCTAGACCGATA
M10-4 TTTGTACTGTGAGTGCCAAG AACACCCAAACTTGTGAAAC
M10-7 AATGGTGCATATTTAATGGG ATTGTTTGTTTCCTTGTTGG
M11-2 TTGTCAGGAACAACCTTAGC ACCGAGCCTAGCAACTTAG
M11-6 CGCTTGAAAGGACTCCAGAC CCATCTACTCACCAAACGTTCC
M11-9 CGGCATGTCATGGACTACG CAGGAAATCTGTAACCAGAGG
M11-11 TGAACCCTGCTCTTCTGAGTC AAAGAAGATATGAAGGCACCG
M11-13 TGCTTGATCTGTGTTCGTCC TAGCAGCACCAGCATGAAAG

图3

RIL群体根系性状QTL的遗传图谱位置 每条染色体的左边列出为分子标记。"

表7

RIL群体的根系性状QTL"

重复
Repeat
性状
Trait
染色体
Chromosome
QTL LOD P
P-value
分子标记
Marker
遗传位置
Genetic position (cM)
贡献率
PEV (%)
加性效应
Additive effect
I 最长根长 LRL 1 qLRL1 2.30 0.01 M1-16-M1-19 173.3-188.0 10.3 -1.48
4 qLRL4 2.38 0.01 M4-10-M4-13 161.1-190.6 4.8 1.47
10 qLRL10 2.33 0.01 M10-4-M10-7 15.2-43.4 6.3 1.16
总根系长 TRL 1 qTRL1 4.62 0.01 M1-20-M1-22 224.4-256.0 42.5 -102.52
2 qTRL2 12.92 0.01 M2-10-M2-13 153.9-178.1 17.0 64.91
7 qTRL7 5.84 0.01 M7-1-M7-3 0.0-18.6 9.1 47.36
11 qTRL11 8.47 0.01 M11-11-M11-13 126.5-136.0 7.8 43.95
根表面积 RSA 2 qRSA2 4.59 0.01 M2-10-M2-13 153.9-178.1 15.7 5.67
7 qRSA7 3.60 0.01 M7-2-M7-4 18.6-62.2 17.7 6.03
11 qRSA11 3.19 0.01 M11-9-M11-13 92.0-136.0 7.1 3.81
根体积 RV 2 qRV2 3.49 0.01 M2-10-M2-13 153.9-178.1 11.3 0.05
7 qRV7 3.27 0.01 M7-2-M7-4 18.6-62.2 15.9 0.06
10 qRV10 2.37 0.01 M10-4-M10-7 15.2-43.4 4.6 0.03
11 qRV11 3.77 0.01 M11-2-M11-6 24.1-41.2 9.4 0.05
根直径 RD 1 qRD1 4.38 0.01 M1-2-M1-4 15.1-49.3 8.7 0.02
4 qRD4 4.04 0.01 M4-10-M4-13 161.1-190.6 26.3 -0.04
II 最长根长 LRL 4 qLRL4 2.03 0.04 M4-10-M4-13 161.1-190.6 8.3 1.99
总根系长 TRL 1 qTRL1 13.53 0.01 M1-18-M1-21 185.0-254.8 22.1 -53.10
重复
Repeat
性状
Trait
染色体
Chromosome
QTL LOD P
P-value
分子标记
Marker
遗传位置
Genetic position (cM)
贡献率
PEV (%)
加性效应
Additive effect
7 qTRL7 16.84 0.01 M7-2-M7-4 18.6-62.2 18.6 48.80
9 qTRL9 10.29 0.01 M9-7-M9-10 86.2-97.6 11.7 -38.67
11 qTRL11 6.95 0.01 M11-9-M11-13 92.0-136.0 24.7 56.19
根表面积RSA 2 qRSA2 4.61 0.01 M2-10-M2-14 153.9-192.0 15.6 16.63
7 qRSA7 3.64 0.01 M7-2-M7-4 18.6-62.2 17.9 17.84
11 qRSA11 3.36 0.01 M11-9-M11-13 92.0-136.0 7.4 11.48
根体积RV 10 qRV10 2.00 0.04 M10-4-M10-7 15.2-43.4 6.5 0.03
根直径 RD 4 qRD4 3.10 0.01 M4-10-M4-13 161.1-190.6 9.4 -0.04
11 qRD11 2.83 0.01 M11-4-M11-7 29.0-60.2 8.1 0.04

图4

9311和NIL-qLRL4在营养液中培养21 d的根系形态 标尺为3 cm。"

表8

9311和NIL-qLRL4的根系性状和活性"

品种/品系
Variety/Line
最长根长
Longest root length (cm)
总根系长
Total root length (cm)
根表面积
Root surface area (cm2)
根体积
Root volume (cm3)
根直径
Root diameter (mm)
总吸收面积
Total absorbing area (m2)
比表面积
Specific surface area (cm2 cm-3)
9311 17.3 ± 0.4 331.38 ± 30.07 34.23 ± 3.93 0.36 ± 0.05 0.32 ± 0.01 0.636 ± 0.032 4243.3 ± 210.2
NIL-qLRL4 14.6 ± 0.1** 340.40 ± 19.91 34.44 ± 3.15 0.36 ± 0.04 0.35 ± 0.02 0.535 ± 0.023** 3566.9 ± 150.3**

图5

qLRL4的精细定位 qLRL4被缩小到标记IND4-1和IND4-3之间的68.23 kb区间内。图例的黑色条块代表9311基因型, 白色条块代表NPB基因型。NPB: 日本晴。最长根长表示为均值±标准差。*和**分别表示0.05和0.01显著水平差异。LRL: 最长根长。"

表9

qLRL4精细定位区间的候选基因和候选基因中引起氨基酸改变的序列变化"

基因 Gene 注释 Annotation SNP INDEL NPB 9311 CDS
LOC_Os04g58870 exo70 exocyst complex subunit, putative, expressed 4 0 G T 487
T C 514
A G 632
T G 1529
LOC_Os04g58880 exo70 exocyst complex subunit, putative, expressed 1 0 A G 1279
LOC_Os04g58890 Expressed protein 1 0 T G 416
LOC_Os04g58900 Hydrolase, NUDIX family, domain containing protein, expressed 1 0 C T 142
LOC_Os04g58910 Receptor protein kinase TMK1 precursor, putative, expressed 3 1 G T 223
A G 1630
A G 1909
+TCC 0 14
LOC_Os04g58920 U-box domain-containing protein, putative, expressed 1 0 G T 338
LOC_Os04g58940 Expressed protein 0 0 0 0
LOC_Os04g58960 Regulator of chromosome condensation, putative, expressed 3 0 T G 1148
C T 1116
C T 2582

图6

候选基因的相对表达量 相对表达量数据为平均数±标准差, n = 3。**表示与9311比较达到0.01的差异显著水平。"

[1] 范楚玉. 西周农事诗中反映的粮食作物选种及其发展. 自然科学史研究, 1982, 3:267-272.
Fan C Y. Selection and development of grain crops reflected in the poetry of agriculture in the Western Zhou Dynasty. Stud Hist Nat Sci, 1982, 3:267-272 (in Chinese with English abstract).
[2] 陶荣荣, 蔡晗, 朱庆权, 周益雷, 王康平, 余超, 侯丹平, 刘海浪, 张耗. 水稻高产高效的根-冠互作机制研究进展. 中国农学通报, 2018, 34(5):1-4.
Tao R R, Cai H, Zhu Q Q, Zhou Y L, Wang K P, Yu C, Hou D P, Zhang H. Research progress on root-crown interaction mechanism of high-yield and high-efficiency rice. Chin Agric Sci Bull, 2018, 34(5):1-4 (in Chinese with English abstract).
[3] 丁仕林, 刘朝雷, 钱前. 水稻根系遗传研究进展. 中国稻米, 2019, 25(5):24-29.
Ding S L, Liu C L, Qian Q. Advances in rice root genetics. China Rice, 2019, 25(5):24-29 (in Chinese with English abstract).
[4] 徐吉臣, 李晶昭, 郑先武, 邹亮星, 朱立煌. 苗期水稻根部性状的QTL定位. 遗传学报, 2001, 28:433-438.
Xu J C, Li J Z, Zheng X W, Zou L X, Zhu L H. QTL mapping of rice root traits at seedling stage. J Genet Genomics, 2001, 28:433-438 (in Chinese with English abstract).
[5] 滕胜, 曾大力, 钱前, 国广泰史, 藤本宽, 黄大年, 朱立煌. 水稻根系活力的遗传分析. 中国水稻科学, 2002, 16:119-123.
Teng S, Zeng D L, Qian Q, Kunihiro Y, Fujimoto K, Huang D N, Zhu L H. Genetic analysis of root vigor in rice. Chin J Rice Sci, 2002, 16:119-123 (in Chinese with English abstract).
[6] 胡兴明, 郭龙彪, 曾大力, 高振宇, 滕胜, 李浩戈, 朱立煌, 钱前. 水稻苗期发根力的QTL和上位性分析. 中国水稻科学, 2004, 18:396-400.
Hu X M, Guo L B, Zeng D L, Gao Z Y, Teng S, Li H G, Zhu L H, Qian Q. QTL mapping and epistasis analysis of rice root growth ability at seedling stage. Chin J Rice Sci, 2004, 18:396-400 (in Chinese with English abstract).
[7] Mitsuhiro O, Wataru T, Takeshi E. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions. Theor Appl Genet, 2010, 121:535-547.
doi: 10.1007/s00122-010-1328-3 pmid: 20390245
[8] 王汝慈. 两个生育时期水稻耐低磷胁迫相关性状的QTL定位. 中国农业科学院硕士学位论文, 北京, 2009.
Wang R C. QTL Mapping of Low Phosphorus Stress-related Traits in Rice during Two Growth Periods. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[9] Obara M, Fukuta Y, Yanagihara S. Genetic variation and QTLs related to root development in upland new rice for Africa(NERICA) varieties. Breed Sci, 2019, 69:94-103.
doi: 10.1270/jsbbs.18059
[10] Kitomi Y, Nakao E, Sawako K. Fine mapping of quick rooting 1 and 2, quantitative trait loci increasing root length in rice. G3: Genes Genom Genet, 2018, 8:727-735.
[11] 章怡兰, 林雪, 吴仪, 李梦佳, 张晟婕, 路梅, 饶玉春, 王跃星. 水稻根系遗传育种研究进展. 植物学报, 2020, 55:382-393.
doi: 10.11983/CBB20021
Zhang Y L, Lin X, Wu Y, Li M J, Zhang S J, Lu M, Rao Y C, Wang Y X. Research progress on rice root genetics and breeding. Chin Bull Bot, 2020, 55:382-393 (in Chinese with English abstract).
[12] 梁永书, 周军杰, 南文斌, 段东东, 张汉马. 水稻根系研究进展. 植物学报, 2016, 51:98-106.
Liang Y S, Zhou J J, Nan W B, Duan D D, Zhang H M. Research progress of rice root system. Chin Bull Bot, 2016, 51:98-106 (in Chinese with English abstract).
[13] Yao S G, Mushika J, Taketa S, Ichii M. The short root mutation srt5 defines a sugar-mediated root growth in rice(Oryza sativa L.). Plant Sci, 2004, 167:49-54.
doi: 10.1016/j.plantsci.2004.02.025
[14] Jia L, Zhang B, Mao C. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta, 2008, 228:51-59.
doi: 10.1007/s00425-008-0718-0
[15] Inukai Y, Sakamoto T, Ueguchitanka M. Crown rootless1, which is essential for crown root formation in rice, is a target of an auxin response factor in auxin signaling. Plant Cell, 2005, 17:1387-1396.
doi: 10.1105/tpc.105.030981
[16] Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J, 2005, 43:47-56.
doi: 10.1111/tpj.2005.43.issue-1
[17] Zhao Y, Hu Y F, Dai M G, Huang L M, Zhou D Y. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell, 2009, 21:736-748.
doi: 10.1105/tpc.108.061655 pmid: 19258439
[18] Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9:1-14.
doi: 10.1186/s12284-015-0073-2
[19] Dai X Y, Wang Y Y, Zhang W H. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot, 2016, 67:947-960.
doi: 10.1093/jxb/erv515
[20] Ao S G, Shin T, Masahiko I. Isolation and characterization of an abscisic acid-insensitive mutation that affects specifically primary root elongation in rice (Oryza sativa L.). Plant Sci, 2003, 164:971-978.
doi: 10.1016/S0168-9452(03)00081-5
[21] Jing H W, Yang X L, Zhang J, Liu X H, Zheng H K, Dong G J, Nian J Q, Feng J, Xia B, Qian Q, Li J Y, Zuo J R. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signaling. Nat Commun, 2015, 6:7395.
doi: 10.1038/ncomms8395
[22] McCouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14:11-131.
[23] 姜树坤, 张凤鸣, 白良明, 孙世臣, 王彤彤, 丁国华, 姜辉, 张喜娟. 水稻移栽后新生根系相关性状的QTL分析. 中国水稻科学, 2014, 6:598-604.
Jiang S K, Zhang F M, Bai L M, Sun S C, Wang T T, Ding G H, Jiang H, Zhang X J. QTL analysis of the related traits of new roots after transplanting rice. Chin J Rice Sci, 2014, 6:598-604 (in Chinese with English abstract).
[24] 徐晓明, 张迎信, 王会民, 任翠, 王汝慈, 沈希宏, 占小登, 吴玮勋, 程式华, 曹立勇. 一个水稻根长QTL qRL4的分离鉴定. 中国水稻科学, 2016, 30:363-370.
Xu X M, Zhang Y X, Wang H M, Ren C, Wang R C, Shen X H, Zhan X D, Wu W X, Cheng S H, Cao L Y. Isolation and identification of a QTL qRL4 of rice root length. Chin J Rice Sci, 2016, 30:363-370 (in Chinese with English abstract).
[25] Rogers E D, Benfey P N. Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol, 2015, 32:93-98.
doi: 10.1016/j.copbio.2014.11.015
[26] Raffaele D I, Francisco S L, Emanuele S. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol, 2007, 17:678-682.
pmid: 17363254
[27] Raffaele D I, Kinu N, Laila M. A genetic framework for the control of cell division and differentiation in the root meristem. Science, 2008, 322:1380-1384.
doi: 10.1126/science.1164147 pmid: 19039136
[28] Liu W, Xu Z H, Luo D. Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J, 2003, 36:189-202.
doi: 10.1046/j.1365-313X.2003.01866.x
[29] Chen H, Ma B, Zhou Y, He S J, Tang S Y, Lu X, Xie Q, Chen S Y, Zhang J S. E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein. Proc Natl Acad Sci USA, 2018, 115:4513-4518.
doi: 10.1073/pnas.1719387115
[30] Zhang H G, Zhang L J, Si H, Ge Y S, Liang G H, Gu M H, Tang S Z. Rf5 is able to partially restore fertility to Honglian-type cytoplasmic male sterile japonica rice(Oryza sativa) lines. Mol Breed, 2016, 36:1-10.
doi: 10.1007/s11032-015-0425-z
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!