作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1863-1873.doi: 10.3724/SP.J.1006.2021.02088
田彪(), 丁仕林, 刘朝雷, 阮班普, 姜洪真, 郭锐, 董国军, 胡光莲, 郭龙彪, 钱前, 高振宇*()
TIAN Biao(), DING Shi-Lin, LIU Chao-Lei, RUAN Ban-Pu, JIANG Hong-Zhen, GUO Rui, DONG Guo-Jun, HU Guang-Lian, GUO Long-Biao, QIAN Qian, GAO Zhen-Yu*()
摘要:
为了解析水培苗期根系相关性状的遗传调控, 以籼稻9311和粳稻日本晴(Nipponbare, NPB)为亲本的148个株系构成的重组自交系群体为材料, 对水稻幼苗根系相关性状开展QTL分析。在2次重复中共检测到26个控制最长根长、总根系长、根表面积、根体积和根直径的QTL, 分布在水稻第1、2、4、7、9、10、11号共7条染色体上, 发现了水稻第2、4、7和10号染色体上的4个QTL簇, 包括第4号染色体上控制最长根长的QTL qLRL4。为了精细定位该QTL, 我们构建了以9311为背景、插入缺失标记IND4-1和IND4-4间来自NPB的近等系NIL-qLRL4。利用NIL-qLRL4和9311构建的F2群体, 最终将qLRL4精细定位在标记IND4-1和IND4-3之间约68.23 kb的区间内并预测了候选基因。此根长QTL的精细定位将有助于水稻根长遗传机理的研究, 为探究水稻根系形态建成的分子机制奠定了基础。
[1] | 范楚玉. 西周农事诗中反映的粮食作物选种及其发展. 自然科学史研究, 1982, 3:267-272. |
Fan C Y. Selection and development of grain crops reflected in the poetry of agriculture in the Western Zhou Dynasty. Stud Hist Nat Sci, 1982, 3:267-272 (in Chinese with English abstract). | |
[2] | 陶荣荣, 蔡晗, 朱庆权, 周益雷, 王康平, 余超, 侯丹平, 刘海浪, 张耗. 水稻高产高效的根-冠互作机制研究进展. 中国农学通报, 2018, 34(5):1-4. |
Tao R R, Cai H, Zhu Q Q, Zhou Y L, Wang K P, Yu C, Hou D P, Zhang H. Research progress on root-crown interaction mechanism of high-yield and high-efficiency rice. Chin Agric Sci Bull, 2018, 34(5):1-4 (in Chinese with English abstract). | |
[3] | 丁仕林, 刘朝雷, 钱前. 水稻根系遗传研究进展. 中国稻米, 2019, 25(5):24-29. |
Ding S L, Liu C L, Qian Q. Advances in rice root genetics. China Rice, 2019, 25(5):24-29 (in Chinese with English abstract). | |
[4] | 徐吉臣, 李晶昭, 郑先武, 邹亮星, 朱立煌. 苗期水稻根部性状的QTL定位. 遗传学报, 2001, 28:433-438. |
Xu J C, Li J Z, Zheng X W, Zou L X, Zhu L H. QTL mapping of rice root traits at seedling stage. J Genet Genomics, 2001, 28:433-438 (in Chinese with English abstract). | |
[5] | 滕胜, 曾大力, 钱前, 国广泰史, 藤本宽, 黄大年, 朱立煌. 水稻根系活力的遗传分析. 中国水稻科学, 2002, 16:119-123. |
Teng S, Zeng D L, Qian Q, Kunihiro Y, Fujimoto K, Huang D N, Zhu L H. Genetic analysis of root vigor in rice. Chin J Rice Sci, 2002, 16:119-123 (in Chinese with English abstract). | |
[6] | 胡兴明, 郭龙彪, 曾大力, 高振宇, 滕胜, 李浩戈, 朱立煌, 钱前. 水稻苗期发根力的QTL和上位性分析. 中国水稻科学, 2004, 18:396-400. |
Hu X M, Guo L B, Zeng D L, Gao Z Y, Teng S, Li H G, Zhu L H, Qian Q. QTL mapping and epistasis analysis of rice root growth ability at seedling stage. Chin J Rice Sci, 2004, 18:396-400 (in Chinese with English abstract). | |
[7] |
Mitsuhiro O, Wataru T, Takeshi E. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions. Theor Appl Genet, 2010, 121:535-547.
doi: 10.1007/s00122-010-1328-3 pmid: 20390245 |
[8] | 王汝慈. 两个生育时期水稻耐低磷胁迫相关性状的QTL定位. 中国农业科学院硕士学位论文, 北京, 2009. |
Wang R C. QTL Mapping of Low Phosphorus Stress-related Traits in Rice during Two Growth Periods. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract). | |
[9] |
Obara M, Fukuta Y, Yanagihara S. Genetic variation and QTLs related to root development in upland new rice for Africa(NERICA) varieties. Breed Sci, 2019, 69:94-103.
doi: 10.1270/jsbbs.18059 |
[10] | Kitomi Y, Nakao E, Sawako K. Fine mapping of quick rooting 1 and 2, quantitative trait loci increasing root length in rice. G3: Genes Genom Genet, 2018, 8:727-735. |
[11] |
章怡兰, 林雪, 吴仪, 李梦佳, 张晟婕, 路梅, 饶玉春, 王跃星. 水稻根系遗传育种研究进展. 植物学报, 2020, 55:382-393.
doi: 10.11983/CBB20021 |
Zhang Y L, Lin X, Wu Y, Li M J, Zhang S J, Lu M, Rao Y C, Wang Y X. Research progress on rice root genetics and breeding. Chin Bull Bot, 2020, 55:382-393 (in Chinese with English abstract). | |
[12] | 梁永书, 周军杰, 南文斌, 段东东, 张汉马. 水稻根系研究进展. 植物学报, 2016, 51:98-106. |
Liang Y S, Zhou J J, Nan W B, Duan D D, Zhang H M. Research progress of rice root system. Chin Bull Bot, 2016, 51:98-106 (in Chinese with English abstract). | |
[13] |
Yao S G, Mushika J, Taketa S, Ichii M. The short root mutation srt5 defines a sugar-mediated root growth in rice(Oryza sativa L.). Plant Sci, 2004, 167:49-54.
doi: 10.1016/j.plantsci.2004.02.025 |
[14] |
Jia L, Zhang B, Mao C. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta, 2008, 228:51-59.
doi: 10.1007/s00425-008-0718-0 |
[15] |
Inukai Y, Sakamoto T, Ueguchitanka M. Crown rootless1, which is essential for crown root formation in rice, is a target of an auxin response factor in auxin signaling. Plant Cell, 2005, 17:1387-1396.
doi: 10.1105/tpc.105.030981 |
[16] |
Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J, 2005, 43:47-56.
doi: 10.1111/tpj.2005.43.issue-1 |
[17] |
Zhao Y, Hu Y F, Dai M G, Huang L M, Zhou D Y. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell, 2009, 21:736-748.
doi: 10.1105/tpc.108.061655 pmid: 19258439 |
[18] |
Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9:1-14.
doi: 10.1186/s12284-015-0073-2 |
[19] |
Dai X Y, Wang Y Y, Zhang W H. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot, 2016, 67:947-960.
doi: 10.1093/jxb/erv515 |
[20] |
Ao S G, Shin T, Masahiko I. Isolation and characterization of an abscisic acid-insensitive mutation that affects specifically primary root elongation in rice (Oryza sativa L.). Plant Sci, 2003, 164:971-978.
doi: 10.1016/S0168-9452(03)00081-5 |
[21] |
Jing H W, Yang X L, Zhang J, Liu X H, Zheng H K, Dong G J, Nian J Q, Feng J, Xia B, Qian Q, Li J Y, Zuo J R. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signaling. Nat Commun, 2015, 6:7395.
doi: 10.1038/ncomms8395 |
[22] | McCouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14:11-131. |
[23] | 姜树坤, 张凤鸣, 白良明, 孙世臣, 王彤彤, 丁国华, 姜辉, 张喜娟. 水稻移栽后新生根系相关性状的QTL分析. 中国水稻科学, 2014, 6:598-604. |
Jiang S K, Zhang F M, Bai L M, Sun S C, Wang T T, Ding G H, Jiang H, Zhang X J. QTL analysis of the related traits of new roots after transplanting rice. Chin J Rice Sci, 2014, 6:598-604 (in Chinese with English abstract). | |
[24] | 徐晓明, 张迎信, 王会民, 任翠, 王汝慈, 沈希宏, 占小登, 吴玮勋, 程式华, 曹立勇. 一个水稻根长QTL qRL4的分离鉴定. 中国水稻科学, 2016, 30:363-370. |
Xu X M, Zhang Y X, Wang H M, Ren C, Wang R C, Shen X H, Zhan X D, Wu W X, Cheng S H, Cao L Y. Isolation and identification of a QTL qRL4 of rice root length. Chin J Rice Sci, 2016, 30:363-370 (in Chinese with English abstract). | |
[25] |
Rogers E D, Benfey P N. Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol, 2015, 32:93-98.
doi: 10.1016/j.copbio.2014.11.015 |
[26] |
Raffaele D I, Francisco S L, Emanuele S. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol, 2007, 17:678-682.
pmid: 17363254 |
[27] |
Raffaele D I, Kinu N, Laila M. A genetic framework for the control of cell division and differentiation in the root meristem. Science, 2008, 322:1380-1384.
doi: 10.1126/science.1164147 pmid: 19039136 |
[28] |
Liu W, Xu Z H, Luo D. Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J, 2003, 36:189-202.
doi: 10.1046/j.1365-313X.2003.01866.x |
[29] |
Chen H, Ma B, Zhou Y, He S J, Tang S Y, Lu X, Xie Q, Chen S Y, Zhang J S. E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein. Proc Natl Acad Sci USA, 2018, 115:4513-4518.
doi: 10.1073/pnas.1719387115 |
[30] |
Zhang H G, Zhang L J, Si H, Ge Y S, Liang G H, Gu M H, Tang S Z. Rf5 is able to partially restore fertility to Honglian-type cytoplasmic male sterile japonica rice(Oryza sativa) lines. Mol Breed, 2016, 36:1-10.
doi: 10.1007/s11032-015-0425-z |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|