欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (5): 807-813.doi: 10.3724/SP.J.1006.2021.03039

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

氮响应转录因子ZmNLP5影响玉米根系生长的功能研究

葛敏(), 王元琮, 宁丽华, 胡梦梅, 石习, 赵涵*()   

  1. 江苏省农业科学院种质资源与生物技术研究所/江苏省农业生物学重点实验室, 江苏南京 210014
  • 收稿日期:2020-06-20 接受日期:2020-11-13 出版日期:2021-05-12 网络出版日期:2020-12-15
  • 通讯作者: 赵涵
  • 作者简介:E-mail: gemin8614@163.com
  • 基金资助:
    国家自然科学基金项目(32001564);江苏省重点研发计划项目(BE207365);江苏省农业科技自主创新资金项目(CX(18)1001)

Function analysis of nitrogen-responsive transcription factor ZmNLP5 affecting root growth in maize

GE Min(), WANG Yuan-Cong, NING Li-Hua, HU Meng-Mei, SHI Xi, ZHAO Han*()   

  1. Institute of Crop Germplasm and Biotechnology / Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2020-06-20 Accepted:2020-11-13 Published:2021-05-12 Published online:2020-12-15
  • Contact: ZHAO Han
  • Supported by:
    National Natural Science Foundation of China(32001564);China Key Research and Development Program of Jiangsu Province(BE207365);Jiangsu Agriculture Science and Technology Innovation(CX(18)1001)

摘要:

研究作物氮高效机制并挖掘利用其中重要的调控基因, 对我国农业绿色发展具有重要意义。前期我们发现氮响应转录因子ZmNLP5调控亚硝酸还原酶基因的表达, 对玉米氮素吸收利用具有促进作用, 但其调控机制尚未明确。基于此, 本研究以ZmNLP5基因突变体(zmnlp5)和野生型(WT)植株为研究材料, 深入解析ZmNLP5影响玉米氮素吸收利用的生理机制。足氮(sufficient nitrogen, SN)和低氮(deficient nitrogen, DN)条件下研究材料表型分析发现, DN条件下相对于WT植株, zmnlp5植株根长显著降低。根部不同区域ZmNLP5表达量分析发现, ZmNLP5主要在根尖区域表达。不同亚硝酸盐浓度处理下, 研究材料的根长和根尖区域亚硝酸盐含量分析发现, 当亚硝酸盐的浓度高于2 mmol L-1时, zmnlp5突变体根长相对于WT显著降低, zmnlp5植株根尖区域亚硝酸盐积累量显著高于WT。SN和DN条件下研究材料根部亚硝酸盐含量检测发现, DN条件zmnlp5植株根尖区域所积累的亚硝酸盐也显著高于WT。综上所述, 转录因子ZmNLP5在玉米植株响应低氮环境根部伸长生长中发挥重要功能, 该结果为玉米氮高效育种提供了一定的理论基础。

关键词: 玉米, 氮素, 转录因子, 氮响应, 根长

Abstract:

Improving nitrogen (N) use efficiency of crops is crucial for minimizing N loss and reducing environmental pollution, which is a requirement for the sustainable agriculture. Our previous study found that the transcription factor ZmNLP5 directly regulated the expression of ZmNIR1.1 and promoted nitrogen uptake and assimilation in maize, however, its underlying regulation mechanism is unclear. Here, we performed further phenotype analysis of zmnlp5 and wild type (W22) plants in hydroponic culture on sufficient nitrogen (SN) solution and deficient nitrogen (DN) solution. Compared with WT plants, the root length of zmnlp5 mutant plants was significantly decreased under DN condition. Compared with upper and middle regions of roots, ZmNLP5 was predominantly expressed in root tip regions. Then, we examined the relationship between root length and nitrite content in root tips under a series of nitrite concentrations. The results showed that there was no significant differences in root length between WT and zmnlp5 until the nitrite concentration reached 2 mmol L-1 and higher; however, when the concentration of nitrite was higher than 2 mmol L-1, the root length of zmnlp5 was significantly shorter than WT, and the accumulation of nitrite in the root tips of zmnlp5 was significantly higher than WT. Interestingly, zmnlp5 plants also accumulated significantly more nitrite in the root tips than WT under DN condition. The study showed that the transcription factor ZmNLP5 played an important role in the root growth of maize in response to deficient nitrogen condition, and provided the candidate genes for breeding of maize nitrogen use efficiency in the future.

Key words: maize, nitrogen, transcription factor, nitrogen response, root length

图1

足氮和低氮条件下野生型和zmnlp5突变体材料根长分析 A: 表型鉴定(SN: 足氮; DN: 低氮; 标尺为20 mm); B: 根长分析(** P ≤ 0.01, t测验, n = 3)。"

图2

根部不同区域ZmNLP5表达量分析 A: mRNA表达量分析, 内参基因为ZmUPF1, 显著差异用不同字母表示(P ≤ 0.05); B: WB检测根部不同区域中ZmNLP5蛋白的表达量, UDPGP为内参蛋白。"

图3

亚硝酸盐处理下野生型和zmnlp5突变体材料根长分析 A: 表型鉴定(标尺=20 mm); B: 根长分析(* P ≤ 0.05, t测验, n = 3)。"

图4

亚硝酸盐处理下野生型和zmnlp5突变体材料根尖亚硝酸盐含量"

图5

2种氮环境下野生型和zmnlp5突变体材料根部不同区域亚硝酸盐含量"

[1] Gutierrez R A. Systems biology for enhanced plant nitrogen nutrition. Science, 2012,336:1673-1675.
[2] Guana P Z, Ripolla J J, Wang R H, Vuong L, Bailey-Steinitz L J, Ye D, Crawford N M. Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc Natl Acad Sci USA, 2017,114:2419-2424.
[3] Bi Y M, Meyer A, Downs G S, Shi X, El-Kereamy A, Lukens L, Rothstein S J. High throughput RNA sequencing of a hybrid maize and its parents shows different mechanisms responsive to nitrogen limitation. BMC Genom, 2014,15:77.
[4] Humbert S, Subedi S, Cohn J, Zeng B, Bi Y M, Chen X, Zhu T, McNicholas P D, Rothstein S J. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genom, 2013,14:3.
[5] Xu G, Fan X, Miller A J. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012,63:153-182.
[6] Crawford N M. Nitrate: nutrient and signal for plant growth. Plant Cell, 1995,7:859-868.
[7] Crawford N M, Forde B G. Molecular and developmental biology of inorganic nitrogen nutrition. Arabid Book, 2002,1:e0011.
[8] Moose S, Below F E. Biotechnology approaches to improving maize nitrogen use efficiency. In: Kriz A, Larkins B, eds. Molecular Genetic Approaches to Maize Improvement. Biotechnology in Agriculture and Forestry, Springer, Berlin, Heidelberg, 2009. pp 65-77.
[9] Ueda Y, Konishi M, Yanagisawa S. Molecular basis of the nitrogen response in plants. Soil Sci Plant Nutr, 2017,63:329-341.
[10] Yu P, Eggert K, von Wirén N, Li C J, Hochholdinger F. Cell type-specific gene expression analyses by RNA sequencing reveal local high nitrate-triggered lateral root initiation in shoot-borne roots of maize by modulating auxin-related cell cycle regulation. Plant Physiol, 2015,169:690.
[11] Trevisan S, Manoli A, Ravazzolo L, Botton A, Pivato M, Masi A, Quaggiotti S. Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey. J Exp Bot, 2015,66:3699-3715.
[12] Gutierrez R A, Stokes T L, Thum K, Xu X, Obertello M, Katari M S, Tanurdzic M, Dean A, Nero D C, McClung C R, Coruzzi G M. Systems approach identifies an organic nitrogen- responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci USA, 2008,105:4939-4944.
[13] Rubin G, Tohge T, Matsuda F, Saito K, Scheible W R. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell, 2009,21:3567-3584.
[14] Marchive C, Roudier F, Castaings L, Brehaut V, Blondet E, Colot V, Meyer C, Krapp A. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun, 2013,4:1713.
[15] Ge M, Liu Y H, Jiang L, Wang Y C, Lyu Y D, Zhou L, Liang S Q, Bao H B, Zhao H. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Plant Growth Regul, 2018,84:95-105.
[16] Konishi M, Yanagisawa S. Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response. Plant J, 2010,63:269-282.
[17] Ge M, Wang Y C, Liu Y H, Jiang L, He B, Ning L H, Du H Y, Lyu Y D, Zhou L, Lin F, Zhang T F, Liang S Q, Lu H Y, Zhao H. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize. Plant J, 2020,102:353-368.
[18] Hachiya T, Ueda N, Kitagawa M, Hanke G, Suzuki A, Hase T, Sakakibara H. Arabidopsis root type ferredoxin: NADP(H) oxidoreductase 2 is involved in detoxification of nitrite in roots. Plant Cell Physiol, 2016,57:2440-2450.
[19] Schlüter U, Mascher M, Colmsee C, Scholz U, Bräutigam A, Fahnenstich H, Sonnewald U. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis. Plant Physiol, 2012,160:1384-1406.
[20] Lin F, Jiang L, Liu Y, Lv Y, Dai H, Zhao H. Genome-wide identification of housekeeping genes in maize. Plant Mol Biol, 2014,86:543-554.
[21] Zanin L, Zamboni A, Monte R, Tomasi N, Varanini Z, Cesco S, Pinton R. Transcriptomic analysis highlights reciprocal interactions of urea and nitrate for nitrogen acquisition by maize roots. Plant Cell Physiol, 2015,56, 532-548.
[22] Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quilleré I, Leydecker M, Kaiser W, Morot-Gaudry J F. Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta, 2002,215:708-715.
[23] Kiba T, Krapp A. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol, 2016,57:707-714.
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!