欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1593-1602.doi: 10.3724/SP.J.1006.2021.02036

• 耕作栽培·生理生化 • 上一篇    下一篇

不同株型杂交籼稻对氮肥的耐受性差异比较

杨志远1(), 舒川海1, 张荣萍2, 杨国涛2, 王明田3, 秦俭4, 孙永健1, 马均1, 李娜1,*()   

  1. 1四川农业大学水稻研究所/作物生理生态及栽培四川省重点实验室, 四川成都 611130
    2西南科技大学生命科学与工程学院, 四川绵阳 621010
    3四川省气象局, 四川成都 610072
    4四川省农业科学院水稻高粱研究所, 四川德阳 618000
  • 收稿日期:2020-05-23 接受日期:2021-01-11 出版日期:2021-08-12 网络出版日期:2021-02-23
  • 通讯作者: 李娜
  • 作者简介:E-mail: dreamislasting@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0301706);国家重点研发计划项目(2017YFD0301701);四川省教育厅重点项目(18ZA0390)

Comparison of tolerances to nitrogen fertilizer between compact and loose hybrid indica rice varieties

YANG Zhi-Yuan1(), SHU Chuan-Hai1, ZHANG Rong-Ping2, YANG Guo-Tao2, WANG Ming-Tian3, QIN Jian4, SUN Yong-Jian1, MA Jun1, LI Na1,*()   

  1. 1Rice Research Institute, Sichuan Agricultural University/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
    2School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 611000, Sichuan, China
    3Sichuan Provincial Meteorological Service, Chengdu 610072, Sichuan, China
    4Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang 618000, Sichuan, China
  • Received:2020-05-23 Accepted:2021-01-11 Published:2021-08-12 Published online:2021-02-23
  • Contact: LI Na
  • Supported by:
    National Key Research and Development Program of China(2017YFD0301706);National Key Research and Development Program of China(2017YFD0301701);Scientific Research Fund of Sichuan Provincial Education Department(18ZA0390)

摘要:

本研究通过3个大田裂区试验探究紧凑型杂交籼稻(compact hybrid rice, CHR)和松散型杂交籼稻(loose hybrid rice, LHR)品种对氮肥的耐受性差异。试验于2016—2018年在四川绵阳和成都实施, 主区为2个不同类型水稻品种各2个: 紧凑型杂交稻(CHR)隆两优1206和Y两优1号、松散型杂交稻(LHR)宜香优2115和F优498, 副区为4个施氮量: 0 (N0)、90 (N90)、150 (N150)和210 (N210)。结果表明, CHR对高氮耐受性优于LHR, 施氮量≤150 kg hm-2时, LHR产量高于CHR, 施氮量达到210 kg hm-2时, CHR单穗重优势升至14.46%, 而有效穗劣势降至12.46%, 产量较LHR高1.43%。偏最小二乘回归分析显示, 高峰苗、拔节至抽穗期生长速率、叶面积指数(leaf area index, LAI)及表征叶片伸展程度的消光系数(K值)对CHR和LHR产量贡献均为正向, 成穗率和抽穗期有效穗占比对产量贡献为负, 对氮肥农学利用率的影响则相反; 除K值外, 其余指标对产量贡献相近, 氮肥农学利用率亦如此。N0和N90条件下, CHR的LAI和K值均小于LHR, 光能截获率亦低于LHR; 施氮量由150 kg hm-2增长至210 kg hm-2, CHR的K值显著提高, 而LHR几乎无变化, 最终CHR抽穗期光能截获率超越LHR, 表明紧凑型杂交稻叶片伸展对高氮响应灵敏。

关键词: 水稻, 紧凑型杂交稻, 松散型杂交稻, 施氮量, 耐肥性

Abstract:

To explore the tolerances of compact hybrid rice (CHR) and loose hybrid rice (LHR) varieties to nitrogen fertilizer, three split-plot designed experiments were applied with main plot of four rice varieties (Longliangyou 1206, CHR; Y Liangyou 1, CHR; Yixiangyou 2115, LHR; and Fyou 498, LHR), and the sub-plot contained four N application rates (0 kg hm-2, N0; 90 kg hm-2, N90; 150 kg hm-2, N150; and 210 kg hm-2, N210). The results revealed that CHR was more tolerant to high nitrogen than LHR, and when the applied nitrogen was not higher than 150 kg hm-2, the yields of LHR were higher than those of CHR. When the applied nitrogen reached 210 kg hm-2, the single panicle weight advantage of CHR increased to 14.46%, while the effective panicle disadvantage decreased to 12.46%, then the yield of CHR was 1.43% higher than that of LHR. Partial least squares regression analysis showed that peak seedlings, growth rate from elongation to heading stage, leaf area index (LAI) and extinction coefficient (K-value) which characterized the degree of leaf stretching were positive contributions to CHR and LHR. The effective panicle rate at elongation and heading stages contributed negatively to the yield, but had the opposite effect on the agronomic efficiency of nitrogen fertilizer. Except K-value, the other indicators contributed similarly to yield, as did the agronomic efficiency of nitrogen fertilizer. Under N0 and N90, LAI and K-values of CHR were smaller than LHR, and the radiation interception rate was also lower than LHR. When nitrogen applied increased from 150 kg hm-2 to 210 kg hm-2, the K-value of CHR increased significantly, while LHR almost unchanged, resulting in the higher radiation interception rate at heading stage of CHR than LHR, indicating that the leaf stretching of CHR was sensitive to high nitrogen.

Key words: rice, compact hybrid rice, loose hybrid rice, nitrogen application rate, nitrogen tolerance

表1

2个试验点水稻生长期间气象条件"

地点
Location
年份
Year
全生育期降雨量 全生育期日照时数
Total sunshine hours of WGS (h)
全生育期日平均温度
Average diurnal temperature of WGS (℃)
Total rainfall of WGS (mm)
绵阳 Mianyang 2016 426.0 757.3 23.88
成都 Chengdu 2017 538.8 630.3 22.32
成都 Chengdu 2018 571.4 648.2 22.51

表2

2016-2018年耕层土壤养分含量表"

地点
Location
年份
Year
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
速效氮
Available N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
绵阳 Mianyang 2016 22.38 1.89 98.45 21.89 101.22
成都 Chengdu 2017 24.55 2.11 118.04 28.91 109.23
成都 Chengdu 2018 21.72 2.01 102.45 24.04 98.67

表3

试验品种产量及主要形态指标特征"

类型
Type
品种
Variety
有效
穗数Panicle m-2
单穗
重量Panicle weight (g)
产量
Grain yield
(g m-2)
农学利用率AEN
(kg kg-1)
叶张角
Leaf opening angel
叶基角
Leaf basal angel
叶片披垂度
Leaf drooping degree
剑叶Flag leaf 倒二叶2nd leaf from top 倒三叶3rd leaf from top 剑叶
Flag leaf
倒二叶2nd leaf from top 倒三叶3rd leaf from top 剑叶
Flag leaf
倒二叶2nd leaf from top 倒三叶3rd leaf from top
CHR LLY 191.38 b 5.05 b 968 b 19.85 b 13.17 d 17.08 b 19.13 b 11.10 c 14.22 b 17.84 b 2.07 b 2.86 b 1.29 b
YLY 167.32 c 6.44 a 1078 a 24.98 a 14.09 c 17.95 b 19.73 b 11.80 bc 14.96 b 18.87 b 2.29 b 2.99 b 1.36 b
LHR YXY 203.70 a 4.78 b 974 b 20.30 b 18.34 b 24.04 a 27.09 a 13.14 b 18.09 a 23.21 a 5.20 a 5.95 a 3.88 a
FY 186.02 b 6.16 a 1146 a 25.88 a 20.77 a 25.64 a 27.68 a 15.12 a 18.41 a 23.62 a 5.65 a 7.23 a 4.06 a

表4

紧凑型和松散型杂交稻产量、有效穗数、单穗重、氮肥农学利用率、LAI及K值的方差分析"

项目
Item
产量
Grain yield
有效穗数Panicles 单穗重量Panicle weight 氮肥农学利用率
AEN
稻株叶面积指数
LAI at full heading stage
稻株叶片消光系数
K-value at full heading stage
品种(V) 8.86* 318.66*** 305.36*** 4.11 ns 580.71*** 20.65**
施氮量(N) 748.17*** 1363.77*** 108.12*** 12.86*** 219.77*** 19.10***
年份(Y) 30.07** 45.63*** 8.55* 2.73 ns 95.67*** 1.33 ns
V × N 5.05** 23.72*** 14.65*** 1.72 ns 3.29* 8.22***
V × Y 0.62 ns 0.06 ns 2.84 ns 0.05 ns 1.81 ns 0.12 ns
N × Y 0.82 ns 0.70 ns 0.27 ns 0.29 ns 0.40 ns 0.92 ns
V × N × Y 0.07 ns 0.29 ns 0.17 ns 0.03 ns 0.18 ns 0.84 ns

表5

施氮量对CHR和LHR产量及其构成因素的影响"

品种类型
Variety type
施氮处理
N treatment
2016 2017 2018
有效穗
Panicle (×104 hm-2)
单穗重量
Panicle weight
(g)
产量
Grain yield
(kg hm-2)
有效穗
Panicle (×104 hm-2)
单穗重量
Panicle weight
(g)
产量
Grain yield (kg hm-2)
有效穗
Panicle (×104 hm-2)
单穗重量
Panicle weight (g)
产量
Grain yield (kg hm-2)
紧凑型杂交稻
Compact hybrid rice (CHR)
N0 127.6 d 5.23 c 6677 d 126.28 d 5.26 d 6651 d 122.14 d 5.11 c 6242 d
N90 149.03 c 6.03 a 8988 c 142.73 c 6.23 a 8831 c 142.83 c 5.93 a 8471 c
N150 174.27 b 5.85 ab 10,189 b 170.14 b 5.97 b 10,251 b 170.00 b 5.77 a 9801 b
N210 203.83 a 5.65 b 11,520 a 204.02 a 5.68 c 11,340 a 199.03 a 5.40 b 10,757 a
平均值Average 163.68 5.69 9343 160.79 5.79 9268 158.50 5.55 8818
松散型杂交稻
Loose hybrid rice (LHR)
N0 144.44 d 5.11 b 7378 c 139.51 d 5.00 bc 7016 d 137.19 d 5.00 bc 6857 c
N90 165.1 c 5.82 a 9593 b 159.1 c 5.80 a 9159 c 160.29 c 5.67 a 9084 b
N150 212.31 b 5.19 b 11,017 a 208.38 b 5.21 b 10,570 b 203.31 b 5.12 b 10,401 a
N210 227.55 a 4.94 b 11,239 a 231.06 a 4.89 c 11,176 a 223.89 a 4.79 c 10,721 a
平均值Average 187.35 5.26 9807 184.51 5.22 9480 181.17 5.14 9266
F
F-value
V 728.70** 42.03** 22.64* 3342.60** 587.96** 58.58* 150.02** 38.71** 5.23 ns
N 393.50** 30.33** 163.76** 757.14** 53.67** 304.18** 393.38** 46.81** 250.32**
V×N 7.99** 6.22** 2.87 ns 16.83** 5.72* 1.29 ns 5.04* 6.66** 1.90 ns

图1

CHR和LHR分蘖成穗特征 相邻2个柱子左侧代表拔节期, 右侧代表抽穗期。CHR: 紧凑型杂交稻; LHR: 松散型杂交稻"

图2

紧凑型和松散型杂交稻拔节至抽穗期生长速率 CHR: 紧凑型杂交稻; LHR: 松散型杂交稻。"

表6

施氮量对CHR和LHR抽穗期LAI、光能截获率及K值的影响"

品种类型Variety type 施氮处理
N treatment
2016 2017 2018
叶面积指数LAI 光能截获率RIR 消光系数
K
叶面积指数LAI 光能截获率RIR 消光系数
K
叶面积指数LAI 光能截获率RIR 消光系数
K
紧凑型杂交稻
Compact hybrid rice (CHR)
N0 6.04 c 78.34 d 0.25 c 5.60 d 77.26 c 0.27 b 5.61 c 77.00 c 0.26 a
N90 6.90 b 84.05 c 0.27 c 6.36 c 82.14 c 0.27 b 6.40 b 82.98 b 0.28 a
N150 7.57 a 92.04 b 0.34 b 6.83 b 88.95 b 0.33 b 7.15 a 91.39 a 0.35 a
N210 8.05 a 95.97 a 0.40 a 7.48 a 96.23 a 0.45 a 7.58 a 93.10 a 0.35 a
平均Average 7.14 87.60 0.32 6.57 86.15 0.33 6.68 86.12 0.31
松散型杂交稻
Loose hybrid rice (LHR)
N0 6.87 d 83.87 c 0.27 a 6.04 d 80.95 b 0.28 a 6.34 d 81.98 c 0.27 b
N90 7.72 c 87.55 b 0.27 a 7.21 c 87.30 a 0.29 a 7.28 c 87.18 b 0.29 b
N150 8.71 b 90.76 b 0.27 a 7.78 b 89.04 a 0.30 a 8.12 b 89.35 ab 0.28 a
N210 9.34 a 94.55 a 0.32 a 8.61 a 92.26 a 0.30 a 8.81 a 92.17 a 0.29 a
平均Average 8.16 89.18 0.28 7.41 87.38 0.29 7.64 87.67 0.28
F
F value
V 160.52** 25.69** 4.26 ns 747.58** 1.87 ns 14.27 ns 146.40** 1.88 ns 6.17 ns
N 71.83** 57.50** 12.69** 80.81** 19.71** 4.62* 69.36** 75.30** 8.67**
V×N 1.02 ns 4.52* 2.93 ns 1.96 ns 1.98 ns 2.98 ns 0.82 ns 6.92** 6.16**

图3

CHR和LHR氮肥农学利用率 相邻3列柱子上不同小写字母表示不同施氮处理间在0.05水平差异显著。CHR: 紧凑型杂交稻; LHR: 松散型杂交稻。"

表7

抽穗期LAI和K值对光能截获率的回归方程"

品种类型
Variety type
指标
Trait
标准回归系数
Standard regression coefficient
决定系数
R2
紧凑型杂交稻 叶面积指数 LAI 0.553** 0.960**
Compact hybrid rice 消光系数 K 0.503**
松散型杂交稻 叶面积指数 LAI 0.736** 0.960**
Loose hybrid rice 消光系数 K 0.521**

表8

稻株形态相关指标对产量和氮肥农学利用率的贡献比较"

品种类型
Variety type
指标
Trait
产量 Grain yield 氮肥农学利用率 AEN
标准偏回归系数
Standard partial regression coefficient
决定系数
R2
标准偏回归系数
Standard partial regression coefficient
决定系数
R2
紧凑型杂交稻
Compact hybrid rice
高峰苗 Peak tiller number 0.1796 0.8325** 0.1188 0.3639**
成穗率 Ear-bearing tiller percentage -0.1776 0.1174
拔节至抽穗生长速率
Growth rate from jointing to heading
0.1661 -0.1098
抽穗期有效穗占比
Ear-bearing tiller percentage at heading
-0.1724 0.114
叶面积指数 LAI 0.1498 -0.099
消光系数 K 0.1501 -0.0992
松散型杂交稻
Loose hybrid rice
高峰苗 Peak tiller number 0.1806 0.6351** -0.1454 0.4117**
成穗率 Ear-bearing tiller percentage -0.1622 0.1306
拔节至抽穗生长速率
Growth rate from jointing to heading
0.1605 -0.1292
抽穗期有效穗占比
Ear-bearing tiller percentage at heading
-0.1758 0.1416
叶面积指数 LAI 0.1631 -0.1313
消光系数 K 0.0574 -0.0462
[1] 王杰飞, 朱潇, 沈健林, 曾冠军, 王娟, 吴金水, 李勇. 亚热带稻区大气氨/铵态氮污染特征及干湿沉降. 环境科学, 2017,38:2264-2272.
Wang J F, Zhu X, Shen J L, Zeng G J, Wang J, Wu J S, Li Y. Atmospheric ammonia/ammonium-nitrogen concentrations and wet and dry deposition rates in a double rice region in subtropical China. Environ Sci, 2017,38:2264-2272 (in Chinese with English abstract).
[2] Wang J, Fu P, Wang F, Fahad S, Mohapatra P K, Chen Y T, Zhang C D, Peng S B, Cui K H, Nie L X, Huang J L. Optimizing nitrogen management to balance rice yield and environmental risk in the Yangtze River’s middle reaches. Environ Sci Pollut Res, 2019,26:4901-4912.
doi: 10.1007/s11356-018-3943-5
[3] 朴钟泽, 韩龙植, 高熙宗. 水稻不同基因型氮素利用效率差异. 中国水稻科学, 2003,17:233-238.
Piao Z Z, Han L Z, Koh H J. Variations of nitrogen use efficiency by rice genotype. Chin J Rice Sci, 2003,17:233-238 (in Chinese with English abstract).
[4] 殷春渊, 张庆, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 马群, 杭杰, 张胜飞. 不同产量类型水稻基因型氮素吸收、利用效率的差异. 中国农业科学, 2010,43:39-50.
Yin C Y, Zhang Q, Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Ma Q, Hang J, Zhang S F. Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance. Sci Agric Sin, 2010,43:39-50 (in Chinese with English abstract).
[5] 董桂春, 王熠, 于小凤, 周娟, 彭斌, 李进前, 田昊, 张燕, 袁秋梅, 王余龙. 不同生育期水稻品种氮素吸收利用的差异. 中国农业科学, 2011,44:4570-4582.
Dong G C, Wang Y, Yu X F, Zhou J, Peng B, Li J Q, Tian H, Zhang Y, Yuan Q M, Wang Y L. Differences of nitrogen uptake and utilization of conventional rice varieties with different growth duration. Sci Agric Sin, 2011,44:4570-4582 (in Chinese with English abstract).
[6] 秦俭, 杨志远, 孙永健, 徐徽, 马均. 不同穗型杂交籼稻物质积累、氮素吸收利用和产量的差异比较. 中国水稻科学, 2014,28:514-522.
Qin J, Yang Z Y, Sun Y J, Xu H, Ma J. Differential comparison of assimilation products accumulation, nitrogen uptake and utilization and grain yield of hybrid Indica rice cultivars with different panicle type. Chin J Rice Sci, 2014,28:514-522 (in Chinese with English abstract).
[7] 郭小红, 王兴才, 孟田, 张惠君, 敖雪, 王海英, 谢甫绨. 中国辽宁省和美国俄亥俄州育成大豆品种形态、产量和品质性状的比较研究. 中国农业科学, 2015,48:4240-4253.
Guo X H, Wang X C, Meng T, Zhang H J, Ao X, Wang H Y, Xie F T. Comparison on morphological, yield, and quality traits of soybean cultivars developed in different years from Liaoning and Ohio. Sci Agric Sin, 2015,48:4240-4253 (in Chinese with English abstract).
[8] Van Wart J, Kersebaum K C, Peng S B, Milner M, Cassman K G. Estimating crop yield potential at regional to national scales. Field Crops Res, 2013,143:34-43.
doi: 10.1016/j.fcr.2012.11.018
[9] 林洪鑫, 潘晓华, 石庆华, 彭春瑞, 吴建富. 栽插密度与施氮量对双季稻上部三叶叶长和叶角的影响. 作物学报, 2010,36:1743-1751.
Lin H X, Pan X H, Shi Q H, Peng C R, Wu J F. Effects of nitrogen application amount and planting density on angle and length of top three leaves in double-cropping rice. Acta Agron Sin, 2010,36:1743-1751 (in Chinese with English abstract).
[10] 李艳大, 汤亮, 张玉屏, 刘蕾蕾, 曹卫星, 朱艳. 水稻冠层光合有效辐射的时空分布特征. 应用生态学报, 2010,21:952-958.
Li Y D, Tang L, Zhang Y P, Liu L L, Cao W X, Zhu Y. Spatiotemporal distribution of photosynthetically active radiation in rice canopy. Chin J Appl Ecol, 2010,21:952-958 (in Chinese with English abstract).
[11] 申广荣, 王人潮, 李云梅, 王秀珍, 沈掌泉. 水稻群丛结构和辐射传输分析. 作物学报, 2001,27:769-775.
Shen G R, Wang R C, Li Y M, Wang X Z, Shen Z Q. Study on rice cluster architecture and radiation transfer. Acta Agron Sin, 2001,27:769-775 (in Chinese with English abstract).
[12] Huang M, Jiang L, Xia B, Zou Y B, Jiang P, Ao H. Yield gap analysis of super hybrid rice between two subtropical environments. Aust J Crop Sci, 2013,7:600-608.
[13] Huang M, Zou Y B, Jiang P, Xia B, Md I, Ao H J. Relationship between grain yield and yield components in super hybrid rice. Sci Agric Sin, 2011,10:1537-1544.
[14] 杨志远, 李娜, 马鹏, 严田蓉, 何艳, 蒋明金, 吕腾飞, 李郁, 郭翔, 胡蓉, 郭长春, 孙永健, 马均. 水肥“三匀”技术对水稻水、氮利用效率的影响. 作物学报, 2020,46:408-422.
Yang Z Y, Li N, Ma P, Yan T R, He Y, Jiang M J, Lyu T F, Li Y, Guo X, Hu R, Guo C C, Sun Y J, Ma J. Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice. Acta Agron Sin, 2020,46:408-422 (in Chinese with English abstract).
[15] 凌启鸿, 苏祖芳, 张海泉. 水稻成穗率与群体质量的关系及其影响因素的研究. 作物学报, 1995,21:463-469.
Ling Q H, Su Z F, Zhang H Q. Relationship between ear bearing tiller percentage and population quality and its influential factors in rice. Acta Agron Sin, 1995,21:463-469 (in Chinese with English abstract).
[16] 蒋彭炎, 洪晓富, 冯来定, 马跃芳, 史济林, 倪竹如, 刘智宏. 水稻中期群体成穗率与后期群体光合效率的关系. 中国农业科学, 1994,27:8-14.
Jiang P Y, Hong X F, Feng D L, Ma Y F, Shi J L, Ni Z R, Liu Z H. Relation between percentage of ear-bearing of colony in the middle phase and photosynthesis efficiency in the late in rice. Sci Agric Sin, 1994,27:8-14 (in Chinese with English abstract).
[17] Horie T, Lubis I, Takai T, Ohsumi A, Kuwasaki K, Katsura K, Nii A. Physiological traits associated with high yield potential in rice. In: Rice Science: Innovations and Impacts for Livelihood. Manila, Philippines: International Rice Research Institute, 2003. pp 117-146.
[18] 杨长明, 杨林章, 韦朝领, 丁超尘. 不同品种水稻群体冠层光谱特征比较研究. 应用生态学报, 2002,13:689-692.
Yang C M, Yang L Z, Wei C L, Ding C C. Canopy spectral characteristics of different rice varieties. Chin J Appl Ecol, 2002,13:689-692 (in Chinese with English abstract).
[19] 李艳大, 黄俊宝, 叶春, 舒时富, 孙滨峰, 陈立才, 王康军, 曹中盛. 不同氮素水平下双季稻株型与冠层内光截获特征研究. 作物学报, 2019,45:1375-1385.
Li Y D, Huang J B, Ye C, Shi S F, Sun B F, Chen L C, Wang K J, Cao Z S. Plant type and canopy light interception characteristics in double cropping rice canopy under different nitrogen rates. Acta Agron Sin, 2019,45:1375-1385 (in Chinese with English abstract).
[20] Hu N, Lu C G, Yao K M, Zou J S. Simulation on distribution of photosyn-thetically active radiation in canopy and optimum leaf rolling index in rice with rolling leaves. Rice Sci, 2009,16:217-225.
doi: 10.1016/S1672-6308(08)60082-7
[21] 汤亮, 朱相成, 曹梦莹, 曹卫星, 朱艳. 水稻冠层光截获、光能利用与产量的关系. 应用生态学报, 2012,23:1269-1276.
Tang L, Zhu X C, Cao M Y, Cao W X, Zhu Y. Relationships of rice canopy PAR interception and light use efficiency to grain yield. Chin J Appl Ecol, 2012,23:1269-1276 (in Chinese with English abstract).
[22] Zhang Y B, Tang Q Y, Zou Y B, Li D Q, Qin J Q, Yang S H, Chen L J, Xia B, Peng S B. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res, 2009,114:91-98.
doi: 10.1016/j.fcr.2009.07.008
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!