欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1724-1740.doi: 10.3724/SP.J.1006.2021.04253

• 研究论文 • 上一篇    下一篇

种植密度对油菜正反交组合产量与倒伏相关性状的影响

娄洪祥1(), 姬建利1, 蒯婕1, 汪波1, 徐亮2, 李真1, 刘芳3, 黄威4, 刘暑艳5, 尹羽丰6, 王晶1,*(), 周广生1   

  1. 1华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
    2青海省农林科学院, 青海西宁 810016
    3全国农技推广中心油料处, 北京 100125
    4黄冈市农业科学院, 湖北黄冈 438000
    5荆州农业科学院, 湖北荆州 434000
    6襄阳市农业科学院, 湖北襄阳 441057
  • 收稿日期:2020-11-23 接受日期:2021-01-21 出版日期:2021-09-12 网络出版日期:2021-02-19
  • 通讯作者: 王晶
  • 作者简介:E-mail: davidlou@webmail.hzau.edu.cn
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”()(2018YFD1000900)

Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L.

LOU Hong-Xiang1(), JI Jian-Li1, KUAI Jie1, WANG Bo1, XU Liang2, LI Zhen1, LIU Fang3, HUANG Wei4, LIU Shu-Yan5, YIN Yu-Feng6, WANG Jing1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, Qinghai, China
    3National Agricultural Technology Extension Service Center, Beijing 100125, China
    4Huanggang Academy of Agriculture Science, Huanggang 438000, Hubei, China
    5Jingzhou Academy of Agriculture Science, Jingzhou 434000, Hubei, China
    6Xiangyang Academy of Agriculture Science, Xiangyang 441057, Hubei, China
  • Received:2020-11-23 Accepted:2021-01-21 Published:2021-09-12 Published online:2021-02-19
  • Contact: WANG Jing
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900)

摘要:

高产抗倒不协调是油菜生产中最主要的矛盾, 严重制约着油菜生产效益的进一步提高。在高密度、机械化生产模式下, 这种矛盾尤为突出。受母系遗传的影响, 杂交油菜的正、反交组合在产量与倒伏相关性状上常表现出明显差异, 但种植密度对不同杂交组合这些关键性状的影响尚不明确。本研究针对浙油50、华航901及其正交(华航901×浙油50)与反交(浙油50×华航901)组合设置5个种植密度, 考察其产量及倒伏相关性状并计算其杂种优势, 研究种植密度对亲本及正、反交组合产量与倒伏相关性状的影响, 为当前高密度直播生产模式下杂交油菜亲本的选配提供依据。结果表明, 随种植密度增加, 亲本及正、反交组合的实际产量和经济系数均呈先增后降的趋势, 且无论正、反交组合, 其实际产量的动态变化规律均与父本更为接近; 倒伏指数在两点随种植密度的变化规律不同, 但无论正、反交组合, 其倒伏指数的动态变化规律均与母本相一致。在西宁试点, 杂交组合产量均具有明显的平均杂种优势, 且正交组合比反交组合具有更大的杂种优势; 正交组合具有一定的抗倒性杂种优势, 但是反交组合无抗倒性杂种优势。综上所述, 高密度直播生产模式下, 杂交油菜亲本选配推荐方案以高产品种为父本, 抗倒性强的品种为母本进行组配, 可以获得高产、抗倒性强且更适宜密植的杂交油菜品种。

关键词: 油菜, 正反交组合, 种植密度, 产量, 倒伏

Abstract:

High yield and lodging resistance are two goals in rapeseed production that are hard to reconcile, which restrict severely the further improvement of economic performance. This contradiction is particularly prominent in the high-density and mechanize farming mode. Due to maternal inheritance, there are obvious differences in yield and lodging resistance related traits among reciprocal hybrids, but the effects of planting density on these key traits are not clear. Here, Huahang 901 and Zheyou 50, which are conventional rapeseed varieties and their reciprocal hybrids, were planted with gradient density. The yield and lodging related traits were measured and the heterosis of each trait was calculated. In order to provide the basis for the selection of parents under the high-density and direct seeding farming mode, the effects of planting density on yield and lodging related traits of parents and reciprocal hybrids were investigated. The results showed that the actual yield and economic coefficient of two parents and their reciprocal hybrids were first increased and then decreased with the increase of the planting density. Interesting, the dynamic change pattern and the values of both traits of reciprocal hybrids under gradient density were well consistent with those of paternal parent. The variation of lodging index with increased density at two sites was different, but the values and the dynamic change patterns of reciprocal hybrids were consistent with that of the maternal parent. In 2017 in Xining, the actual yield of reciprocal hybrids had obvious heterosis and Huahang 901×Zheyou 50 showed higher heterosis than that of Zheyou 50×Huahang 901. Meanwhile, the Huahang 901×Zheyou 50 had greater heterosis of lodging resistances, but there was no such heterosis in Zheyou 50×Huahang 901. In conclusion, to obtain hybrids rapeseed varieties with high yield lodging resistance and dense planting under the high-density and direct seeding farming mode, it was better to select those varieties with high-yield as paternal parents and those varieties with strong lodging resistance as maternal parents.

Key words: rapeseed, reciprocal hybrids, planting density, yield, lodging

图1

种植密度对油菜产量构成因子的影响(2017) D1、D2、D3、D4和D5分别表示种植密度为1.5×105、3.0×105、4.5×105、6.0×105和7.5×105株 hm-2。ZY50、HH901、HH901×ZY50和ZY50×HH901分别代表浙油50、华航901、华航901×浙油50和浙油50×华航901。 "

图2

种植密度对油菜产量相关性状的影响(2017) 缩写和处理同图1。 "

附表1

种植密度对油菜产量与产量构成因子的影响"

年份(点)
Year
(site)
品种
Variety
密度Density 单株角果数
Number of siliques per plant
每角果粒数
Number of seeds per silique
千粒重
1000-seed weight (g)
单株产量
Yield per plant (g)
实际产量Actual yield
(kg hm-2)
生物产量
Biological yield
(kg hm-2)
经济系数Economic coefficient
(%)
2017武汉 浙油50 D1 315.6 ab 20.6 a 3.47 hij 22.56 a 2590.5 j 10384.4 fg 24.97 jkl
2017 Wuhan Zheyou 50 D2 228.5 efg 19.0 b 3.60 bcde 15.63 e 2829.5 d 11064.8 e 25.62 hij
D3 192.6 ghij 18.8 b 3.63 ab 13.14 g 3082.7 b 11597.3 c 26.62 efg
D4 187.4 hij 18.1 c 3.62 abc 11.28 h 2651.9 ghij 10054.4 h 26.43 fg
D5 179.3 hij 17.4 de 3.68 a 10.48 ij 2618.1 hij 10314.7 g 25.41 ijk
华航901
Huahang 901
D1 292.0 abc 16.6 f 3.61 bcd 17.50 d 2418.2 l 9288.5 m 26.09 ghi
D2 283.6 bcd 14.6 hi 3.61 bcd 14.92 f 2649.8 ghij 9704.5 k 27.33 bcd
D3 203.6 ghi 13.8 jk 3.54 efg 9.95 jk 2717.9 efg 9725.6 k 28.00 ab
D4 198.9 ghij 13.5 kl 3.56 cdef 9.56 kl 2642.4 hij 9974.3 i 26.52 fg
D5 186.9 hij 13.1 l 3.55 def 8.69 m 2509.8 k 9611.2 l 26.17 gh
华航901 D1 326.5 a 17.8 cd 3.48 ghij 20.22 b 2684.7 fgh 9933.1 i 27.06 def
×浙油50 D2 311.0 ab 16.9 ef 3.51 fghi 18.45 c 2862.3 d 10449.1 f 27.45 abcd
Huahang 901× D3 254.5 cde 14.4 ij 3.48 ghij 12.75 g 3182.3 a 11336.5 d 28.11 a
Zheyou 50 D4 216.1 efgh 14.3 ij 3.52 fgh 10.88 hi 2736.2 ef 9849.7 j 27.84 abc
D5 206.8 fghi 13.4 kl 3.46 hij 9.59 kl 2601.5 ij 9542.8 l 27.29 cde
浙油50× D1 246.1 de 16.6 f 3.42 j 16.97 d 2405.3 l 10075.0 h 23.90 n
年份(点)
Year
(site)
品种
Variety
密度Density 单株角果数
Number of siliques per plant
每角果粒数
Number of seeds per silique
千粒重
1000-seed weight (g)
单株产量
Yield per plant (g)
实际产量Actual yield
(kg hm-2)
生物产量
Biological yield
(kg hm-2)
经济系数Economic coefficient
(%)
华航901 D2 244.6 ef 15.4 g 3.45 ij 13.00 g 2663.1 ghi 10993.1 e 24.26 mn
Zheyou 50× D3 187.3 hij 15.3 g 3.51 fghi 10.06 jk 2961.2 c 12150.1 b 24.42 lmn
Huahang 901 D4 171.4 ij 15.2 gh 3.54 efg 9.22 lm 3055.2 b 12342.0 a 24.79 klm
D5 164.2 j 15.2 gh 3.52 fgh 7.79 n 2754.5 e 11266.8 d 24.50 lmn
2017西宁 浙油50 D1 241.2 c 23.9 c 3.88 abc 22.39 c 3129.4 j 12767.8 n 24.54 m
2017 Xining Zheyou 50 D2 162.6 g 21.8 de 3.72 ef 13.20 e 3884.0 f 14689.3 e 26.48 hijk
D3 126.8 ij 21.7 de 3.56 g 9.79 h 4138.6 cd 15445.8 c 26.82 ghij
D4 100.9 m 19.5 gh 3.86 abc 7.59 jk 3886.1 f 14351.0 fg 27.14 fghi
D5 93.7 n 19.6 gh 3.91 abc 7.18 l 3852.9 f 14978.6 d 25.75 kl
华航901 D1 225.8 d 26.4 a 3.81 cde 22.72 c 3352.7 i 12218.5 o 27.50 efg
Huahang 901 D2 161.6 g 20.3 fg 3.84 bcd 12.61 f 3686.3 g 12872.5 m 28.67 cd
D3 128.8 ij 19.0 hi 3.94 ab 9.65 h 3878.6 f 13063.0 l 29.75 ab
D4 95.9 mn 19.3 hi 3.96 a 7.34 kl 3963.1 ef 13707.7 k 28.95 bcd
D5 76.3 o 18.6 i 3.95 ab 5.61 n 3567.7 gh 12720.1 n 28.11 de
华航901 D1 306.6 a 25.1 b 3.68 fg 28.28 a 3870.6 f 14209.0 h 27.25 efgh
×浙油50 D2 181.1 f 22.1 d 3.68 f 14.70 d 4072.4 de 14701.0 e 27.77 ef
Huahang 901× D3 150.4 h 17.1 jk 3.87 abc 9.93 h 4573.7 a 15004.7 d 30.52 a
Zheyou 50 D4 123.6 j 16.6 k 3.86 abc 7.90 j 4198.8 cd 14264.2 gh 29.50 bc
D5 107.0 l 21.1 ef 3.94 ab 8.88 i 4113.3 cd 13944.5 j 29.54 bc
浙油50× D1 295.0 b 21.3 de 3.72 ef 23.38 b 3554.7 h 14365.2 f 24.81 m
华航901 D2 193.0 e 18.5 i 3.64 fg 12.98 e 3644.0 gh 14049.1 i 25.97 jkl
Zheyou 50× D3 153.8 h 17.1 jk 3.93 ab 10.33 g 4208.0 c 16039.6 b 26.29 ijk
Huahang 901 D4 132.0 i 17.5 j 3.97 a 9.20 i 4422.8 b 16470.1 a 26.89 fghi
D5 117.0 k 15.0 l 3.74 def 6.58 m 3621.3 gh 14371.2 f 25.26 lm
方差分析Variance analyses
年份(点) Year & Site (YS) ** ** ** ** ** ** **
品种Variety (V) ** ** ** ** ** ** **
密度Density (D) ** ** ** ** ** ** **
YS×V ** ** ** ** ** ** **
YS×D ** ** ** ** ** ** **
V×D NS ** ** ** ** ** **
YS×V×D ** ** ** ** ** ** *

图3

种植密度对正、反交组合产量杂种优势指数的影响(2017) 缩写和处理同图1。不同小写字母表示相同品种密度间差异达显著水平(P < 0.05)。 "

图4

种植密度对油菜成熟期主要农艺性状的影响(2017) 缩写和处理同图1。 "

附表2

种植密度对油菜成熟期主要农艺性状的影响(2017年, 武汉)"

品种
Variety
密度
Density
株高
Plant height (cm)
一次分枝高度
Primary branch height (cm)
分枝数
Branch
number
根颈粗
Root crown diameter (mm)
地上部鲜重
Shoot fresh weight (g)
根鲜重
Root fresh weight (g)
茎秆抗折力
Stem breaking resistance (N)
浙油50 D1 212.6 a 88.3 gh 7.9 c 20.47 b 328.92 a 42.30 a 140.78 a
Zheyou 50 D2 202.0 c 94.6 abc 6.2 h 16.37 g 200.80 f 23.98 g 108.65 c
D3 193.1 e 95.1 ab 6.1 i 15.22 h 173.52 h 20.31 i 98.64 cd
D4 188.3 f 96.0 a 5.6 k 14.85 ij 157.29 i 19.08 j 92.02 de
D5 180.8 ij 86.8 hij 5.4 l 14.72 j 142.82 k 18.56 j 78.18 fg
华航901 D1 200.9 c 87.7 ghi 8.0 b 18.38 d 231.58 e 30.66 d 95.80 cde
Huahang D2 186.4 fg 89.9 fg 6.5 f 17.94 e 176.17 h 28.38 e 83.44 ef
901 D3 181.0 hij 90.8 ef 6.3 g 15.21 h 146.77 j 17.06 k 61.94 hi
D4 180.3 ij 92.3 cde 6.1 i 14.45 k 129.48 l 16.28 l 56.74 hij
D5 172.6 k 83.1 kl 5.8 j 13.87 m 116.39 n 14.81 m 49.40 ij
华航901 D1 196.8 d 83.0 kl 8.1 a 21.05 a 263.66 b 40.51 b 134.12 ab
×浙油50 D2 189.0 f 84.5 jk 7.7 d 20.65 b 241.60 c 37.74 c 122.09 b
Huahang 901 D3 179.8 ij 85.5 ij 6.6 e 16.84 f 141.65 k 26.91 f 65.41 gh
×Zheyou 50 D4 179.1 j 85.8 ij 6.3 g 14.96 ij 130.50 l 21.22 h 56.91 hij
D5 167.9 l 81.0 l 5.2 n 14.47 k 119.43 mn 21.08 h 47.83 j
浙油50× D1 208.5 b 93.3 bcd 6.5 f 18.93 c 235.16 d 40.20 b 103.34 cd
华航901 D2 199.7 cd 94.1 abc 5.8 j 17.85 e 194.07 g 27.71 e 94.33 de
Zheyou 50× D3 184.3 gh 92.6 cde 5.3 m 15.03 hi 156.82 i 20.09 i 84.87 ef
Huahang 901 D4 182.5 hi 91.3 def 5.1 o 14.33 k 130.48 l 17.77 k 63.30 h
D5 173.1 k 81.3 l 4.6 p 14.11 l 121.91 m 15.92 l 59.04 hij
方差分析Variance analyses
品种Variety (V) ** ** ** ** ** ** **
密度Density (D) ** ** ** ** ** ** **
V×D ** ** ** ** ** ** **

附表3

种植密度对油菜成熟期主要农艺性状的影响(2017年, 西宁)"

品种
Variety
密度Density 株高
Plant height (cm)
一次分枝高度
Primary branch height (cm)
分枝数
Branch
number
根颈粗
Root crown diameter (mm)
地上部鲜重
Shoot fresh weight (g)
根鲜重
Root fresh weight (g)
茎秆抗折力
Stem breaking resistance (N)
浙油50 D1 174.4 a 73.1 g 5.9 e 17.38 c 292.65 c 31.21 b 130.01 b
Zheyou 50 D2 168.1 b 77.8 cd 5.2 i 13.41 f 197.37 e 14.51 h 69.91 de
D3 157.8 de 89.3 a 4.7 k 12.42 k 129.09 i 13.06 i 55.57 ef
D4 143.5 hi 79.9 b 4.1 m 10.15 o 91.74 k 7.40 m 33.31 h
D5 132.7 k 74.2 f 4.0 o 9.11 r 80.72 l 6.65 n 24.21 h
华航901 D1 126.0 l 26.1 p 7.0 c 17.44 c 190.02 f 24.12 d 73.22 d
Huahang D2 116.2 m 31.7 o 6.0 d 12.99 h 121.17 j 15.26 g 62.01 def
901 D3 113.5 m 34.9 n 5.5 g 12.80 i 118.13 j 15.17 gh 48.22 fg
D4 106.3 n 44.0 l 4.1 n 9.86 p 61.55 m 8.99 k 34.43 gh
D5 103.4 n 40.7 m 4.0 no 9.39 q 60.03 mn 7.24 mn 25.30 h
品种
Variety
密度Density 株高
Plant height (cm)
一次分枝高度
Primary branch height (cm)
分枝数
Branch
number
根颈粗
Root crown diameter (mm)
地上部鲜重
Shoot fresh weight (g)
根鲜重
Root fresh weight (g)
茎秆抗折力
Stem breaking resistance (N)
华航901 D1 158.8 de 58.7 j 7.5 b 23.11 a 337.99 b 33.53 a 125.40 b
×浙油50 D2 149.4 f 63.5 i 5.8 f 14.93 d 179.60 g 18.73 f 67.68 de
Huahang 901 D3 141.8 i 67.6 h 5.0 j 13.18 g 128.38 i 12.57 i 48.46 fg
×Zheyou 50 D4 136.5 j 67.6 h 4.5 l 11.87 l 78.40 l 9.70 j 31.86 h
D5 135.6 jk 78.0 c 4.5 l 10.53 n 77.11 l 9.04 jk 20.69 h
浙油50× D1 163.0 c 56.0 k 7.6 a 17.64 b 344.22 a 26.15 c 158.41 a
华航901 D2 160.8 cd 73.5 g 5.9 e 14.45 e 225.05 d 19.98 e 92.68 c
Zheyou 50× D3 156.8 e 77.2 de 5.4 h 12.61 j 146.89 h 12.66 i 57.56 ef
Huahang 901 D4 148.6 fg 76.8 e 3.6 p 11.16 m 81.25 l 8.19 l 31.64 h
D5 145.6 gh 73.4 g 3.2 q 8.34 s 56.11 n 4.29 o 19.84 h
方差分析Variance analyses
品种Varity (V) ** ** ** ** ** ** **
密度Density (D) ** ** ** ** ** ** **
V×D ** ** ** ** ** ** **

图5

种植密度对油菜茎秆倒伏指数的影响(2017) P1、P2、P3和P4分别表示除去缩颈段后将主茎平均分为4段, 从地面往上第1、2、3、4段。图中不同字母表示各处理差异达显著水平(P < 0.05)。其他缩写和处理同 图1。 "

附表4

种植密度对油菜茎秆不同部位倒伏指数的影响"

年份(点)
Year (site)
品种
Variety
密度Density 第1段
Part one
(cm g g-1)
第2段
Part two
(cm g g-1)
第3段
Part three
(cm g g-1)
第4段
Part four
(cm g g-1)
4段平均值
Average of four parts (cm g g-1)
2017 武汉
2017 Wuhan
浙油50
Zheyou 50
D1 2.81 c 3.20 b 3.46 b 3.23 d 3.17 b
D2 2.31 h 2.49 f 2.69 h 2.93 g 2.61 g
D3 2.29 hi 2.32 h 2.42 j 2.51 ij 2.39 j
D4 1.79 k 2.19 i 2.38 j 2.12 l 2.12 l
D5 1.61 l 1.96 k 2.19 k 2.17 kl 1.98 n
华航901 D1 3.07 a 3.29 a 3.71 a 3.84 a 3.48 a
Huahang 901 D2 2.88 b 3.02 c 3.21 cd 3.43 c 3.14 b
D3 2.82 c 2.80 d 3.07 e 3.02 f 2.93 d
D4 2.59 e 2.66 e 3.20 d 3.00 f 2.86 e
D5 2.38 g 2.45 fg 2.98 f 2.52 ij 2.58 gh
华航901 D1 2.70 d 2.98 c 3.19 d 3.41 c 3.07 c
×浙油50 D2 2.45 f 2.69 e 2.83 g 3.10 e 2.77 f
Huahang 901 D3 2.38 g 2.42 g 2.63 h 2.85 h 2.57 gh
×Zheyou 50 D4 2.35 gh 2.45 fg 2.82 g 2.55 i 2.54 hi
D5 2.12 j 2.24 i 2.50 i 2.47 j 2.33 k
浙油50× D1 2.69 d 3.02 c 3.27 c 3.60 b 3.15 b
华航901 D2 2.24 i 2.33 h 2.52 i 2.97 fg 2.51 i
Zheyou 50× D3 1.83 k 1.96 k 2.19 k 2.46 j 2.11 l
Huahang 901 D4 1.78 k 2.05 j 2.17 k 2.21 k 2.05 m
年份(点)
Year (site)
品种
Variety
密度Density 第1段
Part one
(cm g g-1)
第2段
Part two
(cm g g-1)
第3段
Part three
(cm g g-1)
第4段
Part four
(cm g g-1)
4段平均值
Average of four parts (cm g g-1)
D5 1.51 m 1.74 l 1.93 l 2.20 k 1.84 o
2017 西宁
2017 Xining
浙油50
Zheyou 50
D1 2.86 e 3.23 c 2.71 f 2.36 f 2.79 e
D2 2.15 i 3.10 ef 2.59 g 2.28 h 2.53 g
D3 2.56 g 2.79 h 2.45 h 1.84 l 2.41 i
D4 2.83 e 3.04 fg 3.02 d 2.28 gh 2.79 e
D5 3.42 b 3.86 a 3.42 a 2.47 e 3.29 a
华航901 D1 1.77 k 2.12 k 2.83 e 3.30 a 2.50 g
Huahang 901 D2 1.62 l 1.81 m 1.86 j 2.05 j 1.83 m
D3 1.39 m 1.74 n 1.85 j 1.96 k 1.73 n
D4 1.43 m 1.67 n 1.75 k 1.40 m 1.56 o
D5 1.95 j 2.28 j 2.11 i 2.13 i 2.12 k
华航901 D1 2.62 g 3.02 g 2.63 g 2.34 fg 2.65 f
×浙油50 D2 2.40 h 2.42 i 2.10 i 1.96 k 2.22 j
Huahang 901 D3 2.18 i 2.17 k 1.91 j 1.81 l 2.02 l
×Zheyou 50 D4 1.91 j 1.96 l 1.53 l 1.42 m 1.71 n
D5 2.70 f 2.82 h 2.46 h 1.79 l 2.44 h
浙油50× D1 3.01 d 3.15 de 3.24 c 2.86 b 3.06 b
华航901 D2 2.72 f 3.03 g 3.03 d 2.86 b 2.91 d
Zheyou 50× D3 2.88 e 3.21 cd 3.02 d 2.72 c 2.96 c
Huahang 901 D4 3.20 c 3.26 c 3.25 c 2.43 e 3.04 b
D5 3.66 a 3.49 b 3.35 b 2.58 d 3.27 a
方差分析Variance analyses
年份(点) Year & Site (YS) ** ** ** ** **
品种Variety (V) ** ** ** ** **
密度Density (D) ** ** ** ** **
YS×V ** ** ** ** **
YS×D ** ** ** ** **
V×D ** ** ** ** **
YS×V×D ** ** ** ** **

图6

种植密度对正、反交组合倒伏相关杂种优势指数的影响(2017) 缩写和处理同图1。不同小写字母表示相同品种密度间差异达显著水平(P < 0.05)。 "

附表5

种植密度对正反交组合倒伏杂种优势指数的影响"

年份(点)
Year (site)
品种
Variety
密度
Density
株高
Plant height (%)
地上部鲜重
Shoot fresh weight (%)
倒伏指数Lodging index (%)
第1段
Part one
第2段
Part two
第3段
Part three
第4段
Part four
平均值
Average
2017 武汉
2017 Wuhan
华航901
×浙油50
Huahang 901
×Zheyou 50
D1 95.19 f 94.08 d 91.76 b 91.84 d 88.90 c 96.44 cd 92.24 d
D2 97.32 cde 128.20 a 94.38 b 97.66 bc 95.94 b 97.54 c 96.44 bc
D3 96.12 ef 88.44 f 93.15 b 94.67 cd 95.98 b 103.13 ab 96.84 b
D4 97.20 de 91.00 e 107.24 a 101.25 ab 101.04 a 99.77 bc 102.12 a
D5 95.03 f 92.15 de 106.48 a 101.57 a 96.56 b 105.41 a 102.20 a
AVG 96.17 98.77 98.60 97.40 95.69 100.46 97.97
浙油50×
华航901
Zheyou 50×
Huahang 901
D1 100.86 b 83.91 g 91.43 b 93.26 d 91.24 c 101.82 b 94.58 c
D2 102.82 a 102.97 b 86.24 c 84.69 e 85.22 d 93.39 d 87.58 e
D3 98.53 cd 97.92 c 71.66 f 76.77 f 79.96 e 88.85 e 79.50 g
D4 99.03 c 91.02 e 81.42 d 84.41 e 77.91 e 86.20 e 82.38 f
D5 97.98 cd 94.07 d 75.46 e 79.09 f 74.77 f 93.70 d 80.81 fg
AVG 99.84 93.98 81.24 83.64 81.82 92.79 84.97
2017 西宁
2017 Xining
华航901
×浙油50
Huahang 901
×Zheyou 50
D1 105.74 ef 140.05 a 113.01 e 112.93 d 94.91 e 82.70 g 100.14 f
D2 105.13 f 112.76 c 127.33 d 98.41 e 94.59 e 90.71 f 101.76 f
D3 104.55 f 103.91 e 110.25 e 96.01 e 89.06 f 95.17 e 97.41 g
D4 109.30 d 102.38 e 89.68 g 83.36 g 64.42 g 77.39 h 78.44 i
D5 114.91 c 109.62 cd 100.62 f 91.86 f 88.70 f 78.03 h 90.29 h
AVG 107.93 113.75 108.18 96.51 86.34 84.80 93.61
浙油50×
华航901
Zheyou 50×
Huahang 901
D1 108.52 de 142.63 a 130.16 d 117.86 c 116.90 d 100.89 d 115.75 e
D2 113.16 c 141.32 a 144.54 b 123.31 b 136.30 b 132.32 b 133.43 c
D3 115.59 c 118.84 b 146.17 ab 141.80 a 140.66 a 143.17 a 142.85 a
D4 118.97 b 106.03 de 150.48 a 138.49 a 136.59 b 132.07 b 139.54 b
D5 123.35 a 79.73 f 136.22 c 113.59 d 121.00 c 112.33 c 120.82 d
AVG 115.92 117.71 141.52 127.01 130.29 124.16 130.48

图7

种植密度与实际产量和倒伏指数的拟合曲线(2017) 缩写同图1。**表示1%显著水平。 "

[1] 刘成, 黄杰, 冷博峰, 冯中朝, 李俊鹏. 我国油菜产业现状, 发展困境及建议. 中国农业大学学报, 2017, 22(12):203-210.
Liu C, Huang J, Leng B F, Feng Z C, Li J P. Current situation, development difficulties and suggestions of Chinese rape industry. J China Agric Univ, 2017, 22(12):203-210 (in Chinese with English abstract).
[2] Food and Agriculture Organization (FAO) of the United Nations. FAO Statistical Databases in 2018. [2020-09-20]. http://www.fao.org.
[3] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41:485-489.
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41:485-489 (in Chinese with English abstract).
[4] 熊秋芳, 文静, 李兴华, 沈金雄. 中国油菜科技创新与产业发展. 中国农业科技导报, 2014, 16(3):14-22.
Xiong Q F, Wen J, Li X H, Shen J X. Technological innovation and industrial development of rapeseed in China. J Agric Sci Technol, 2014, 16(3):14-22 (in Chinese with English abstract).
[5] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018, 44:278-287.
Li X Y, Zhou M, Wang T, Zhang L, Zhou G S, Kuai J. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agron Sin, 2018, 44:278-287 (in Chinese with English abstract).
[6] 安伟, 樊智翔, 郭玉宏, 米小红, 徐澜. 玉米品种的增产潜力与改良方向. 山西农业大学学报, 2003, 23:386-388.
An W, Fan Z X, Guo Y H, Mi X H, Xu L. Utilization and quality improvement of high starch maize. J Shanxi Agric Univ, 2003, 23:386-388 (in Chinese with English abstract).
[7] 李豪圣, 宋健民, 刘爱峰, 程敦公, 王西芝, 杜长林, 赵振东, 刘建军. 播期和种植密度对超高产小麦‘济麦22’产量及其构成因素的影响. 中国农学通报, 2011, 27(5):243-248.
Li H S, Song J M, Liu A F, Cheng D G, Wang X Z, Du C L, Zhao Z D, Liu J J. Effect of sowing time and planting density on yield and components of ‘Jimai 22’ with super-high yield. Chin Agric Sci Bull, 2011, 27(5):243-248 (in Chinese with English abstract).
[8] 刘浩, 王加峰, 孙大元, 郭涛, 刘永柱, 王慧, 陈志强. 水稻矮秆基因研究进展. 广东农业科学, 2013, 40(22):139-144.
Liu H, Wang J F, Sun D Y, Guo T, Liu Y Z, Wang H, Chen Z Q. Research progress of dwarf genes in rice. Guangdong Agric Sci, 2013, 40(22):139-144 (in Chinese with English abstract).
[9] 王成瑷, 王伯伦, 张文香, 赵磊, 赵秀哲, 高连文. 栽培密度对水稻产量及品质的影响. 沈阳农业大学学报, 2004, 35:318-322.
Wang C A, Wang B L, Zhang W X, Zhao L, Zhao X Z, Gao L W. Effect of planting density on grain yield and quality of rice. J Shenyang Agric Univ, 2004, 35:318-322 (in Chinese with English abstract).
[10] 杨国虎, 李新, 王承莲, 罗湘宁. 种植密度影响玉米产量及部分产量相关性状的研究. 西北农业学报, 2006, 15(5):57-60.
Yang G H, Li X, Wang C L, Luo X N. Study on effects of plant densities on the yield and the related characters of maize hybrids. Acta Agric Boreali-Occident Sin, 2006, 15(5):57-60 (in Chinese with English abstract).
[11] 周江明, 赵琳, 董越勇, 徐进, 边武英, 毛杨仓, 章秀福. 氮肥和栽植密度对水稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2010, 16:274-281.
Zhou J M, Zhao L, Dong Y Y, Xu J, Bian W Y, Mao Y C, Zhang X F. Nitrogen and transplanting density interactions on the rice yield and N use rate. J Plant Nutr Fert, 2010, 16:274-281 (in Chinese with English abstract).
[12] Li H T, Li J J, Song J R, Zhao B, Guo C C, Wang B, Zhang Q H, Wang J, King G J, Liu K D. An auxin signaling geneBnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol, 2019, 222:837-851.
[13] Ma N, Yuan J Z, Li M, Li J, Zhang L Y, Liu L X, Naeem M S, Zhang C L. Ideotype population exploration: growth, photosynthesis, and yield components at different planting densities in winter oilseed rape (Brassica napusL.). PLoS One, 2014, 9:e114232.
[14] Kuai J, Sun Y Y, Zhou M, Zhang P P, Zuo Q S, Wu J S, Zhou G S. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res, 2016, 199:89-98.
[15] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51:4625-4632.
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Sci Agric Sin, 2018, 51:4625-4632 (in Chinese with English abstract).
[16] 赵永国, 程勇, 陆光远, 徐劲松, 付桂萍, 邹锡玲, 乔醒, 刘清云, 张学昆. 密植条件下国审冬油菜品种主要性状特点与差异. 中国油料作物学报, 2015, 37:285-290.
Zhao Y G, Cheng Y, Lu G Y, Xu J S, Fu G P, Zou X L, Qiao X, Liu Q Y, Zhang X K. Characteristics and variation of winter rapeseed (Brassica napus L.) cultivars under high density. Chin J Oil Crop Sci, 2015, 37:285-290 (in Chinese with English abstract).
[17] 宋稀, 刘凤兰, 郑普英, 张学昆, 陆光远, 付桂萍, 程勇. 高密度种植专用油菜重要农艺性状与产量的关系分析. 中国农业科学, 2010, 43:1800-1806.
Song X, Liu F L, Zheng P Y, Zhang X K, Lu G Y, Fu G P, Cheng Y. Correlation analysis between agronomic traits and yield of rapeseed (Brassica napus L.) for high-density planting. Sci Agric Sin, 2010, 43:1800-1806 (in Chinese with English abstract).
[18] 王寅, 鲁剑巍. 中国冬油菜栽培方式变迁与相应的养分管理策略. 中国农业科学, 2015, 48:2952-2966.
Wang Y, Lu J W. The transitional cultivation patterns of winter oilseed rape in China and the corresponding nutrient management strategies. Sci Agric Sin, 2015, 48:2952-2966 (in Chinese with English abstract).
[19] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67:35-49.
[20] Hu Q, Hua W, Yin Y, Zhang X, Liu L, Shi J, Zhao Y, Qin L, Chen C, Wang H Z. Rapeseed research and production in China. Crop J, 2017, 5:127-135.
[21] Huang X H, Yang S H, Gong J Y, Zhao Q, Feng Q, Zhan Q L, Zhao Y, Li W J, Cheng B Y, Xia J H, Chen N, Huang T, Zhang L, Fan D L, Chen J Y, Zhou C C, Lu Y Q, Weng Q J, Han B. Genomic architecture of heterosis for yield traits in rice. Nature, 2016, 537:629-633.
[22] 傅廷栋. 中国油菜生产和品种改良的现状与前景. 安徽农学通报, 2000, 6(1):3-10.
Fu T D. Current status and prospects of rape production and variety improvement in China. Anhui Agric Sci Bull, 2000, 6(1):3-10 (in Chinese with English abstract).
[23] 乌兰, 马伟杰, 义如格勒图, 崔仲楠, 鲁兴华. 油菜秸秆饲用价值分析及其开发利用. 内蒙古草业, 2007, 19(1):41-42.
Wu L, Ma W J, Yi R G L T, Cui Z N, Lu X H. Feeding value analysis and development and utilization of rapeseed straw. Inner Mongolia Pratac, 2007, 19(1):41-42 (in Chinese with English abstract).
[24] 左旭. 我国农业废弃物新型能源化开发利用研究. 中国农业科学院博士学位论文, 北京, 2015.
Zuo X. A Research on the Development and Utilization of the Agricultural Residues as New Sources Energy in China. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[25] Li N, Song O J, Peng W, Zhan J P, Shi J Q, Wang X F, Liu G H, Wang H Z. Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). Plant Biotechnol J, 2019, 17:736-749.
[26] Guo M, Rupe M A, Dieter J A, Zou J J, Spielbauer D, Duncan K E, Howard R J, Hou Z L, Simmons C R. Cell number regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell, 2010, 22:1057-1073.
[27] Ma J, Zhang D F, Cao Y Y, Wang L F, Li J J, Lubberstedt T, Wang T Y, Li Y, Li H Y. Heterosis-related genes under different planting densities in maize. J Exp Bot, 2018, 69:5077-5087.
[28] Qian C R, Yu Y, Gong X J, Jiang Y B, Zhao Y, Yang Z L, Hao Y B, Li L, Song Z W, Zhang W J. Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China. Crop J, 2016, 4:459-467.
[29] 沈金雄, 傅廷栋, 杨光圣, 马朝芝, 涂金星. 甘蓝型油菜杂种优势及产量性状的遗传改良. 中国油料作物学报, 2005, 27(1):5-9.
Shen J X, Fu T D, Yang G S, Ma C Z, Tu J X. Analysis of heterosis reveals genetic improvement for yield traits in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2005, 27(1):5-9 (in Chinese with English abstract).
[30] 刘绚霞, 董振生, 刘创社, 董军刚, 李红兵. 甘蓝型优质杂交油菜主要农艺性状配合力与遗传力研究. 中国油料作物学报, 2001, 23(3):2-5.
Liu X X, Dong Z S, Liu C S, Dong J G, Li H B. Combining ability and genetic ability of main agronomy characters in double-low rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2001, 23(3):2-5 (in Chinese with English abstract).
[31] 王天宇, 祝云芳, 陈华璋, 陈泽辉. 玉米正反交杂交种F1主要性状的差异性分析. 玉米科学, 2007, 15(4):52-55.
Wang T Y, Zhu Y F, Chen H Z, Chen Z H. Study on Differences of main characters between maize hybrids and reciprocal crosses. J Maize Sci, 2007, 15(4):52-55 (in Chinese with English abstract).
[32] 张耀文, 赵小光, 田建华, 王辉, 王学芳, 李殿荣, 侯君利, 关周博, 韦世豪. 甘蓝型油菜正反交组合叶片净光合速率和叶绿素含量的比较. 华北农学报, 2015, 30(5):135-140.
Zhang Y W, Zhao X G, Tian J H, Wang H, Wang X F, Li D R, Hou J L, Guan Z B, Wei S H. Comparison of net photosynthetic rate and chlorophyll content of Brassica napus between orthogonal and reciprocal combinations. Acta Agric Boreali-Sin, 2015, 30(5):135-140 (in Chinese with English abstract).
[33] Magrath R, Mithen R. Maternal effects on the expression of individual aliphatic glucosinolates in seeds and seedlings of Brassica napus. Plant Breed, 1993, 111:249-252.
[34] Hua W, Li R J, Zhan G M, Liu J, Li J, Wang X F, Liu G H, Wang H Z. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J, 2012, 69:432-444.
[35] Li N, Peng W, Shi J Q, Wang X F, Liu G H, Wang H Z. The natural variation of seed weight is mainly controlled by maternal genotype in rapeseed (Brassica napus L.). PLoS One, 2015, 10:e0125360.
[36] Liu J, Hao W J, Liu J, Fan S H, Zhao W, Deng L B, Wang X F, Hu Z Y, Hua W, Wang H Z. A novel chimeric mitochondrial gene confers cytoplasmic effects on seed oil content in polyploid rapeseed (Brassica napus). Mol Plant, 2019, 12:582-596.
[37] 王学芳, 田建华, 董育红, 关周博, 杨丽. 不同密度紧凑型油菜的源库特征及与收获指数的相关研究. 中国农学通报, 2020, 36(18):33-38.
Wang X F, Tian J H, Dong Y H, Guan Z B, Yang L. Compact rapeseed under different densities: sink-source characteristics and their correlation with harvest index. Chin Agric Sci Bull, 2020, 36(18):33-38 (in Chinese with English abstract).
[38] 孙超, 汪骞, 唐伟杰, 李丽萍, 夏张婷, 赵海洋, 韩月鑫, 林良斌. 受母性影响的油菜种子性状研究. 种子, 2018, 37(5):9-12.
Sun C, Wang Q, Tang W J, Li L P, Xia Z T, Zhao H Y, Han Y X, Lin L B. Study on the characters of seed in Brassica napus affected by maternale effects. Seed, 2018, 37(5):9-12 (in Chinese with English abstract).
[39] 王瑞, 李加纳, 唐章林, 谌利, 张学昆. 甘蓝型黄籽油菜产量性状的遗传分析. 中国农学通报. 2004, 20(5):37-38.
Wang R, Li J N, Tang Z L, Chen L, Zhang X K. Genetic analysis for yield characters in yellow-seeded rapeseed lines (Brassica napusL.). Chin Agric Sci Bull. 2004, 20(5):37-38 (in Chinese with English abstract).
[40] 顾慧, 戚存扣. 甘蓝型油菜(Brassica napusL.)抗倒性状的主基因+多基因遗传分析. 作物学报, 2008, 34:376-381.
Gu H, Qi C K. Genetic analysis of lodging resistance with mixed model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2008, 34:376-381 (in Chinese with English abstract).
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[11] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[15] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!